Binary Coherent Edge Descriptors

C. Lawrence Zitnick

Microsoft Research, Redmond, WA

Abstract. Patch descriptors are used for a variety of tasks ranging from
finding corresponding points across images, to describing object category
parts. In this paper, we propose an image patch descriptor based on edge
position, orientation and local linear length. Unlike previous works using
histograms of gradients, our descriptor does not encode relative gradi-
ent magnitudes. Our approach locally normalizes the patch gradients to
remove relative gradient information, followed by orientation dependent
binning. Finally, the edge histogram is binarized to encode edge loca-
tions, orientations and lengths. Two additional extensions are proposed
for fast PCA dimensionality reduction, and a min-hash approach for fast
patch retrieval. Our algorithm produces state-of-the-art results on pre-
viously published object instance patch data sets, as well as a new patch
data set modeling intra-category appearance variations.

1 Introduction

The ability to describe an image patch is critical to many recognition algorithms.
Image patches can be used to find correspondences between varying viewpoints
of an object [1-4], or to represent parts of object categories [5-7]. Typically,
a desirable patch descriptor is robust to illumination changes, moderate pose
variation, and intra-category appearance variation.

A standard approach to describe a patch is the use of Histograms of Gradients
(HoG), [1,7-11]. A HoG is defined as the histogram of image gradients over a
combination of positions, orientations and scales. Examples include the SIFT
[1] and GLOH 9] interest point descriptors, which have been shown to be very
effective for object instance recognition. Similar approaches have been applied
to describe object category parts [7,12]. After creating histograms from local
pixel gradients, standard HoG approaches rely on a global normalization step
to account for variations in illumination. However, these descriptors are still
sensitive to the relative magnitudes of gradients. In many scenarios such as
intra-category appearance variation and partial illumination changes the relative
gradient magnitudes do vary, resulting in reduced matching performance. Several
approaches [1,11, 12] use truncated normalization to help reduce this sensitivity.

In this paper, we propose an image patch descriptor based on the location,
orientation, and length of edges, and not their relative gradient magnitudes. We
hypothesize that the presence and not magnitude of edges provides an informa-
tive measure of patch similarity that is robust not only to illumination and pose
changes, but intra-category appearance variation. Our descriptor encodes the

presence or absence of edges using a binary value for a range of possible edge
positions and orientations. In addition the locally linear length of an edge is used
to differentiate sets of coherent edges aligned perpendicular to the edge orienta-
tion from shorter edges resulting from textures. Our approach consists of three
main steps: First, the image patch gradients are locally normalized to remove
variations in relative gradient magnitudes. Second, the normalized gradients are
binned using the position, orientation and local linear length of an edge. Finally,
the normalized gradient histogram is binarized to encode the presence of edges.

In addition to the basic approach we propose two extensions: a fast method
for dimensionally reduction using binary vectors and PCA, and a min-hash fea-
ture representation for efficient retrieval. The approach is tested using a previ-
ously published [11] ground truth object instance data set to test its invariance
to illumination and pose changes. A new data set is provided to test invariance
to intra-category appearance variation. In both cases, state-of-the-art results are
achieved, with significant increases in accuracy over traditional approaches such
as SIFT [1], GLOH [9] and variants of Daisy descriptors [10, 11].

The rest of the paper is organized as follows: In the next section we describe
previous work, followed by our basic approach. In Section 4 we discuss exten-
sions to our algorithm. Finally results are provided in Section 5 following by a
conclusion and discussion.

2 Previous work

There exists a large body of previous work on image patch descriptors [13]. The
SIF'T [1] descriptor popularized the HoG approach and introduced several opti-
mizations, including truncated normalization and ratio tests. Several follow up
papers have improved on the SIFT desciptor using PCA [14], radial binning [9]
and “daisy” binning [11, 15]. Spatial binning parameters have also been learned
from training data [10, 11]. Geometric Blurring [8] proposed blurring the gradi-
ents using a spatially varying blur kernel based on the distance to the center of
the patch. SURF [16] uses Harr wavelets instead of gradients to describe image
patches. Another approach is to use generative models to learn the statistics of
image patches [17].

Image patches have also been described and classified using randomized trees
[18,19] and boosting [20] to aid in detecting object classes.

Gradients are commonly used for category part representation. Felzenszwalb
et al. [7] and Dalal and Triggs [12] use HoGs for object category detection,
while others such as Crandall et al. [6] use binary edge detection. PCA on image
intensities has also shown good results in Fergus et al. [5].

3 Binary edge descriptor

Our descriptor relies on the detection of edges in an image patch. It is assumed
that the presence of edges remains consistent across matching image patches,
even if their relative magnitudes do not. Thus, we describe an edge based on its

orientation, position and length, and not its gradient magnitude. For instance see
Figure 1(a). Both patches share similar edge structure, but the relative gradient
magnitudes vary significantly.

Our method is split into three stages: gradient normalization, edge aggre-
gation and binarization. Gradient normalization removes differences in relative
gradient magnitudes between edges. It is worth noting that we locally normalize
gradients to remove relative differences in magnitude, instead of a global nor-
malization [1] that only accounts for global gain and offset differences. Next, the
gradients are aggregated into bins, after which a binarization process labels the
bins with highest contribution. Before we describe these three stages, we define
our initial gradient orientations and magnitudes.

The descriptor is computed from a n X n square patch of pixels. The intensity
of a pixel p at location (z,,y,) is denoted f(p) or f(xp,yp). The horizontal
gradient f,(p) of the pixel is equal to f(z,+1,yp)— f(2p, Yp) and similarly for the
vertical gradient f,(p). The magnitude of the gradient for pixel p is the Euclidean
norm of its gradients, g, = ||[fz(p) fy(p)]*||2- The orientation is defined as 6, =
arctan(f,(p)/ fz(p)). To help remove noise and sampling artifacts a small amount
of Gaussian blur (¢ = 0.5) is applied to the patch before computing the gradients
and orientations.

3.1 Gradient magnitude normalization

Our goal for gradient normalization is to maintain the gradient profiles while
removing the relative height differences between the gradient peaks. An efficient
method to solve this problem is to normalize the gradients based on the average
gradient magnitude in a local spatial neighborhood. We compute the average
Gaussian weighted gradient magnitude g, in a spatial neighborhood N of p
using
gp = Z gqN(Q§pa 0s), (1)
geEN

where N is the standard normal distribution. The normalized gradients g, are
computed using the ratio of the original gradients and the average gradients,

N 9p

I = max (g, €)’ 2)
where € = 4 is used to ensure the magnitude of g, is above the level of noise.
In our experiments the spatial standard deviation is set to o, = 3. Examples of
the normalized gradients are shown in Figure 1(a). We also experimented with
including orientation to compute the average gradients in three dimensions. This
avoids edges with large gradient magnitudes inhibiting the gradients of nearby
edges with different orientations. However, this computationally more expensive
approach did not improve the accuracy of the final descriptor.

3.2 Edge aggregation

The next stage of our approach aggregates the normalized gradients into bins
defined by an edge’s position, orientation and local linear length. We align the

6
\

ﬂ.llllllllllllll..

HIIIIIIIIIIIIIIIII
ANEEENNNNNENENENN
(d)
= G P P PN S D D SR S Saa
el L P U P P O O R R N
()

Fig. 1. Processing pipeline: (a) Two matching patches (left to right): Original patch,
gradients g, and normalized gradients gp, (b) an illustration of the coordinate frame
used for the orientation dependent binning, (c) the edge histogram with the top patch
shown in red and bottom patch shown in green (yellow denotes agreement), (d) the
histogram after blurring and spliting the edges into two sets of bins based on the
edge’s local linear length, (e) final binarized descriptor, red is the top patch, green is
the bottom patch and yellow denotes agreement.

spatial binning with the gradient’s orientation to allow for the descriptor’s ro-
bustness to vary perpendicular and parallel to an edge. Orientation dependent
sampling also aids in the detection of coherent edges (as shown later), i.e. sets of
similarly orientated gradients aligned perpendicular to the gradient orientation.
This varies from previous approaches [1,9, 11] that define the spatial binning in-
dependent of the orientation. Specifically as illustrated in Figure 1(b), we define
a new coordinate frame (z},,y,,) for each pixel p at position (z;,y,) depending
on its orientation 6, equal to

| Zp
7] =ren], @
where R(6,) is a standard 2D rotation matrix. We assume the origin (0, 0) is at
the center of the patch. Using (x;,, y;,, 6p,) we define our binning on a by x by X by
resolution grid creating a histogram H(z',%’,6). In practice we use b,y = 32,
by = 32 and by = 20. When assigning the values g, to each bin according
to (x},,y,,0p), we use the standard linear soft binning approach using bilinear
interpolation [1]. An example of the resulting bin values can be seen in Figure

1(c).

Detecting coherent edges: Above, we aggregated the normalized gradients
into a fixed number of bins in a 3D Histogram. Specifically, we split the vertical
y" dimension into b, bins, capturing edges 1/b, the length of the patch. Many
edges run the entire length of the patch. The discriminability of the descriptor
could be increased if long coherent edges could be distinguished from shorter
texture edges. A simple approach to estimate edge length L(2’,8) for an edge
at position x’ and orientation 6 is to sum the vertical bins perpendicular to its
gradient’s direction,

L(2',0) =Y H(',y,0). (4)

If we assign a value of [, = L(x’, 0) to every gradient g, we may create a four di-
mensional histogram H(z',y’, 6,1). In our experiments we found discretizing the
edge lengths into two bins, b; = 2, results in an effective separation of coherent
edge gradients and short texture edges, as shown in Figure 1(d). Specifically, we
compute a delta function A(l,) equal to

-«

7)) ()

where the values a and 3 where set to 2 and 8 respectively. Other sigmoid
functions may also be used, but this linear form provides efficient computation.
The normalized gradient values g, are split between the two edge length bins
using A(l,) and 1 — A(l,) as weights.

A(l,) = max(0, min(1, L

3.3 Binary representation

Given a 4D histogram H (z',y’, 6,1) we want to determine the edges present in the
patch, while providing robustness to small changes in position and orientation.

Robustness is provided by applying a small amount of blur to the histogram. We
apply Gaussian blurring in the 2/, ¢’ and 6 dimensions with standard deviations
of o4, 0, and oy respectively. Optimizing over possible values of o,/, o,s and
op we empirically found values of o, = 1, 0, = 3 and 0y = 1 to work well. An
increased amount of blur is applied to the o, dimension parallel to the edges,
since this dimension proved less informative in our experiments, see Section 5.
An example of the blurred histogram is shown in Figure 1(d).

Before binarizing edges in the histogram, we first reduce its resolution to
Ngr X Ny X Ng X ng using sub-sampling. Empirically we found dimensions of
ngy = 24, ny = 8, ng = 12, and n; = 2 for the &', v/, # and [dimensions
respectively to provide good results. Experiments for various values of n./, ny,
ng, n; and are shown in Section 5.

We binarize the sub-sampled histogram’s values by assigning a value of 1 to
the top 7 percent of the bins with highest values, and 0 to the others. To reduce
bias in the detection of longer edges over texture edges, we perform binarization
independently for both sets of edge length bins. The final binarized descriptor
is denoted D, and an example is shown in Figure 1(e). The binarization process
provides nearly full invariance to edge magnitudes. It also provides computa-
tional advantages when reducing the descriptor’s dimensionality as we discuss in
Section 4.1. In our experiments 7 = 20%. Results using other values are shown
in Section 5. In practice, several efficient O(n) methods for finding the top 7
percent may be used and are commonly referred to as “selection algorithms”
[21].

4 Extensions

In this section, we describe two separate extensions to our basic approach for
reducing the dimensionality of our descriptor using PCA and min-hash.

4.1 Dimensionally reduction using PCA

The size of our descriptor D is ng X n,s x ng X n;, which for the values described
above is 4,608 dimensions. This is far larger than standard descriptors such as
SIFT using 128 dimensions. The difference isn’t quite as dramatic if it is consid-
ered that our descriptors are binary. For instance, we could store our descriptor
in the same space as 144 32-bit floating point numbers. Furthermore, comparison
between descriptors can be done efficiently using bit-wise zor functions [22-24].

In this section we explore dimensionally reduction using Principal Component
Analysis (PCA). It has been shown [9, 11, 14] that using PCA can both decrease
the dimensionally of a descriptor and improve accuracy. We perform PCA using
a standard approach to compute K basis vectors. The training dataset Yosemite
provided by [11] was used to learn the basis functions. Using real-valued descrip-
tors, the cost of projecting an M dimensional descriptor using K basis functions
uses M K multiplications and additions, which can be computationally expensive
for large descriptors.

To increase efficiency, we can take advantage of two properties of our de-
scriptors; they are binary and neighboring values typically have the same values,
Figure 1(e). As a result, we can use a technique similar to integral images to
efficiently project our descriptors by pre-computing the following values

Wl?:z = Zwk,j7 (6)

7<i

where wy, ; is the ¢th value in the kth basis vector. Thus, w,ii is the sum of all
values in wy before the ith entry. To compute the reduced dimensional descriptor
D* the kth projection of D is computed as

Dj; = (Di-y — Di)wy,. (7)

i

Since (D;—1 — D;) is only nonzero when neighboring values aren’t equal, the
total amount of computation is greatly reduced. In our experiments, on average
only 10% of neighboring values were not equal when parsing the descriptor using
an z’, y', 6 and [ordering of the dimensions, resulting in just 0.1*M K adds on
average to project onto the PCA vectors. To handle boundary conditions, an
additional entry has to be added to the end of all descriptors with a value of 0.
Results using PCA dimensionality reduction can be found in Section 5.

4.2 Min-hash for fast patch retrieval

We propose using min-hash as an efficient means for finding similar descrip-
tors. Previous works use min-hash [25] for image retrieval and clustering [26,
27]. Locality sensitive hashing, semantic hashing and binary coding [28, 23, 24]
have also been used for image retrieval. Hashing techniques used in conjunction
with inverse look-up tables provide a fast and scalable method for finding sim-
ilar points in high dimensional spaces with certain probabilistic guarantees. In
particular, the min-hash technique has the property that the probability of two
hashes being identical is equal to the Jaccard similarity. The Jaccard similarity
is the cardinality of the intersection of two sets divided by their union’s cardi-
nality. In our task, the elements of the set are the indices assigned to 1 by our
descriptor. A min-hash is found by creating a random permutation of the set of
possible indices. The smallest permutated index with a value of one in a descrip-
tor is its resulting hash value [25]. Multiple hashes can be generated for a single
descriptor using different random permutations. Given a set of descriptors with
hashes, an inverse lookup table can be created to efficiently find descriptors with
equal hash values. If enough hashes are shared between two descriptors, they
are said to “match”. The advantage of hashing over simple quantization such
as vocabulary trees [2] and kd-trees is the matching accuracy is proportional to
the number of hashes stored per descriptor and not fixed based on the amount
of quantization. In this regard it is similar to using randomized kd-trees [29] or
multiple quantizations, except the quantized values can be efficiently computed
without traversing a tree.

In order to increase the uniqueness of a hash, hashes can be concatenated
into sketches. The size of the sketch refers to the number of hashes used to
create it. If the Jaccard similarity between two patches f and f’ is J(f, f’),
the probability of two sketches being identical is J(f, f/)*, where k is the sketch
size. Min-hash is increasingly effective if the Jaccard similarity between matching
images is high and is low for non-matches. In Figure 4(a), we see the density
functions for matching and non-matching image pairs with respect to the Jaccard
similarity. Since our descriptor produces significant separation between the two
distributions and it is binary, it is a good candidate for the min-hash algorithm.
We present results using the min-hash approach with various sketch sizes and
numbers of sketches in Section 5.

5 Experimental results

In this section, we provide experimental results on three datasets. The Liberty
and Notre Dame datasets [11] contain image patches generated from Difference
of Gaussian interest point detectors [1] from the Statue of Liberty and Notre
Dame cathedral, as shown in Figure 2(a,b). Pairs of matching image patches
are verified using structure from motion [4]. These datasets are effective for
measuring a patch descriptor’s robustness to lighting variation and changes in
viewpoint.

We created an additional dataset to measure robustness to intra-category
appearance variation, as shown in Figure 2(c). The category dataset consists of
20 collections of 64 x 64 patches extracted from the Caltech 256 [30] dataset. Each
collection of patches is selected by humans from a single category centered on the
same part of the object, e.g. the back wheel of a motorcycle, the head of a turtle,
etc. From these sets, 12,800 positive patch pairs are split to create testing and
training datasets. An equal number of negative patch pairs are also generated
using random patch selection. The dataset is available from the author’s website.

Table 1 shows the results of various patch descriptors on the three datasets.
We compare our approach Binary Coherent Edge descriptor (BiCE), to SIFT
[1], Gloh [9], and several state-of-the-art descriptors T2-8a-2r6s, T3-2nd-4, T3-
2nd-6 from [11]. Error rates at 95% recall and Equal Error Rates (EER) are
given. The EER is the point on the ROC curve where the percentage of false
positives and false negatives are equal. Since we are using 64 x 64 patches we
also computed SIFT 64 and Gloh 64 using their standard resolutions for spatial
binning, but with the full resolution patches for a fair comparison. Results of
our descriptor using smaller patches and other variations are shown in the next
section. Results using PCA with various dimensions are also shown. Parameters
are kept constant for all experiments using the values stated in previous sections.
Running times for computing a descriptor were approximately 11ms for BiCE,
2ms for SIFT and 14ms for T3-2nd-6 on a 2.4GHz Intel PC. The code for BiCE
is only partially optimized.

The best results are found across all datasets using BiCE with PCA and 256
dimensions, followed closely by BiCE without PCA. The results for T3-2nd-4

and T3-2nd-6 with PCA also perform well. However, rotating these descriptors
using PCA in high dimensional spaces can be computationally expensive. It is
worth noting that T2-8a-2r6s does relatively better on the category dataset than
other previous methods. We hypothesize this is due to the inhibition technique
used to compute orientation binning.

Fig. 2. Examples of matching patches from the (a) Liberty, (b) Notre Dame and (c)
category datasets.

5.1 Parameter exploration

In this section, we explore various adjustments and parameter changes to the
previously described approach. The results are summarized in Table 2. The first
set of figures shows the result of various sampling densities on the histogram H
to get our final descriptor D. The results show that additional sampling in the 3’
dimension does not provide additional accuracy. As the sampling rate decreases
the accuracies slowly decrease. Even with only 432 binary dimensions (54 bytes
of storage) the accuracies still outperform previous techniques. The value of
7 is varied from 10% to 30%, with only minor differences in accuracies. The
removal of the edge length dimension increases the error rate by approximately
6% at 95% recall. The direct use of normalized continuous values sampled from
H instead of using binarization significantly increases the 95% error rate to
27.42%. Similar to the binarization stage, the bins corresponding to different
edge lengths were normalized independently. Normalizing all values together
produces worse results. We also tried binarizing T3-2nd-6 [11] and SIFT [1]
features using our simple approach, but improved results were not achieved.
Other more sophisticated approaches to binarization could produce better results
[23,24]. Finally we tested the descriptor’s invariance to the initial patch size. As
the patch size decreases, the accuracies are slightly better (32 x 32) or slightly
worse (18 x 18).

10

ROC Liberty 100k ROC Notre Dame 100k

05 0.6

ROC Category

.
B BICE PCA 256
os = / T ——BiCE
wl Ll - == T3-2nd-6-2r6s
06 / —T2-8a-2r6s
——GLOH64
os ——SIFT64
0s
.

Fig. 3. ROC curves for (a) Liberty, (b) Notre Dame and (c) Category datasets. Notice
the plotted ranges vary from (a,b) to the more difficult dataset of (c).

11

Table 1. Liberty, Notre Dame and Category dataset accuracies for SIFT [1], Gloh [9],
T2-8a-2r6s, T3-2nd-6, and T3-2nd-6 [11] compared to our approach BiCE. Errors at
95 % recall, and Equal Error Rates (EER) are given. (B) indicates binary dimensions.

Liberty Notre Dame Category
Method Dimensions |95% Error |EER, [95% Error |EER |95% Error |EER
SIFT [11] 128 35.09 - 26.10 - - -
SIFT 64 128 33.38 11.51 26.31 10.03 87.37 32.53
GLOH 64 272 28.38 10.27 20.46 8.87 86.69 31.25
T2-8a-2r6s 104 22.37 9.89 14.70 7.57 54.49 20.59
T3-2nd-4 [11] 416 19.36 - 10.50 - - -
T3-2nd-6 624 20.08 8.89 10.15 6.35 74.34 25.70
T3-2nd-4 PCA [11] 37 17.24 - 9.71 - - -
T3-2nd-6 PCA [11] 42 17.14 - 9.49 - - -
BiCE 4608 (B) 14.47 7.50 8.34 6.01 48.66 17.77
BiCE PCA 256 12.76 7.03 7.46 5.72 45.04 16.74
BiCE PCA 128 13.85 7.24 8.01 5.95 47.69 17.44
BiCE PCA 64 15.82 7.90 9.97 6.50 49.12 18.94
BiCE PCA 32 20.15 9.09 14.37 7.58 54.51 20.84

5.2 Min-hash

The results using the min-hash approach from Section 4.2 are summarized in
Table 3. ROC curves for a subset of the results can be seen in Figure 4, with
BiCE providing an upper bound on the accuracies. The “% Match” and “%
Non-match” columns indicate the probability of an descriptor having a corre-
sponding hash value if it is a matching or non-matching descriptor. For instance,
if a dataset had 1 million descriptors with most being non-matches, we would
find on average 155,500 descriptors in each entry of the inverse lookup table
using a sketch of size 1. As we can see, sketches of larger size are advantageous
to minimize collisions. However, larger sketches also require more hashes to be
stored to find collisions with correct matches. The right tradeoffs are applica-
tion dependent. It is interesting to note that the min-hash approach produces
similar accuracies to SIFT using 128 sketches of size 2 or 64 sketches of size 1.
Hashing techniques are ideal for applications that can handle some degradation
in matching accuracy for gains in efficiency, such as large scale image clustering
and near-duplicate image search [26, 27].

6 Discussion and conclusion

In this paper, we have developed a simple and effective image patch descrip-
tor that provides state-of-the-art results. The descriptor encodes edge position,

12

Table 2. Variations of parameters and methods on the BiCE baseline algorithm. This
includes different descriptor sizes, differing values of 7, removal of edge length infor-
mation, using continuous values instead of binary and using various patch sizes. (B)

denotes binary dimensions.

Liberty
Method Dimensions |95% Error rate |EER
BiCE baseline 4608 (B) 14.47 7.50
BiCE ngy =24,ny =24,n9 = 12,0, =1 13824 (B) 14.68 7.67
BiCE ngy = 16,n, =4,n9 =8 1024 (B) 15.22 7.72
BiCE ny = 12,1, = 3,10 = 6,0, = 1.5,0, = 4,00 = 1.5| 432 (B) 16.27 7.90
BiCE 7 = 10% 4608 (B) 16.28 7.82
BiCE 7 = 15% 4608 (B) 14.86 7.52
BiCE 7 = 30% 4608 (B) 14.46 7.63
BiCE n; = 1 | 2304(B) | 2036 [955 |
BiCE Continuous 4608 27.42 10.27
T3-2nd-6 Binary, 7 = 20% 624 (B) 20.00 8.89
SIFT Binary, 7 = 20% 128 (B) 39.65 13.88
BiCE 32 x 32 patch 4608 (B) 13.86 7.41
BiCE 18 x 18 patch 4608 (B) 16.03 7.84

==Matches
==Non-matches

0 0.2 0.4 0.6 0.8 1

Jaccard Similarity

(a)

0.9

0.8

0.7

0.6

ROC Liberty min-hash 100k

——BiCE

= SIFT 64

0.1

0.2

0.3

0.4 0.5 0.6

(b)

~~~~~~~ 512 sketches, size 4
===-256Sketches, size 3
= = 128sketches, size2
- == - 64sketches, size 1

= — 32sketches, size 1

Fig. 4. (a) Density functions for matching and non-matching image pairs with respect
to their Jaccard similarity, (b) ROC curves for various numbers of sketches and sizes.
BiCE provides an upper bound on the accuracy of the min-hashing approaches.



13

Table 3. Error rates at 95% recall and Equal Error Rates (EER) for various sketch
sizes and numbers of sketches on the Liberty dataset. The percentage of match and
non-match image patches sharing a sketch on average.

Liberty
Sketch size |Number of sketches [95% Error rate | EER |% Match |% Non-match
1 32 42.03 19.26 | 40.47 15.55
1 64 33.96 11.13
2 64 60.95 17.08 | 18.57 291
2 128 27.78 11.79
3 128 44.36 19.67 9.23 0.65
3 256 47.94 12.14
4 256 50.60 17.62 4.75 0.15
4 512 37.53 15.37

orientation, and local linear length, but not relative gradient magnitudes. We
describe two techniques for dimensionality reduction using PCA and min-hash.
Min-hash also provides a method for efficient patch retrieval.

In designing the descriptor, we experimented with other edge information
such as curvature and distinguishing between even and odd edges. However,
these approaches did not yield improved results. For category recognition, it can
be important to be invariant to edge polarity, which our descriptor is not. It
is still an open question on how to encode robustness in situations where it is
useful while not providing full invariance when polarity is informative.

Finally, our edge descriptor might be invariant to relative gradient magni-
tudes, but interest point detectors are generally not with some exceptions [31].
An area of future work is to develop a corresponding interest point detector
for sparse sampling that is robust to relative gradient magnitude and intensity
changes.

References

1. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60
(2004) 91-110

2. Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: CVPR.
(2006) 2161-2168

3. Rothganger, F., Lazebnik, S., Schmid, C., Ponce, J.: 3d object modeling and
recognition using local affine-invariant image descriptors and multi-view spatial
constraints. IJCV 66 (2006)

4. Snavely, N.; Seitz, S.M., Szeliski, R.: Photo tourism: Exploring photo collections
in 3d. In: ACM Transactions on Graphics. Volume 25. (2006) 835-846

5. Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised
scale-invariant learning. In: CVPR. (2003)



14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Crandall, D., Huttenlocher, D.: Weakly supervised learning of part-based spatial
models for visual object recognition. In: ECCV. (2006) 1629

Felzenszwalb, P., Mcallester, D., Ramanan, D.: A discriminatively trained, multi-
scale, deformable part model. In: CVPR. (2008)

Berg, A.C., Malik, J.: Geometric blur for template matching. In: CVPR. (2001)
607-614

Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE
PAMI 27 (2005) 1615-1630

Winder, S.A.J., Brown, M.: Learning local image descriptors. In: CVPR. (2007)
Winder, S., Hua, G., Brown, M.: Picking the best daisy. In: CVPR (2009) 178-185
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
CVPR. (2005) 886-893

Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE
PAMI 27 (2005) 1615-1630

Ke, Y., Sukthankar, R.: PCA-SIFT: A more distinctive representation for local
image descriptors. In: CVPR. (2004) 506-513

Tola, E., Lepetit, V., Fua, P.: A fast local descriptor for dense matching. In:
CVPR. (2008)

Bay, H., Tuytelaars, T., Gool, L.V.: Surf: Speeded up robust features. In: ECCV.
(2006) 404417

Osindero, S., Hinton, G.E.: Modeling image patches with a directed hierarchy of
markov random fields. In: NIPS 20. (2008)

Lepetit, V., Fua, P.: Keypoint recognition using randomized trees. IEEE PAMI
28 (2006) 1465-1479

Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image catego-
rization and segmentation. In: CVPR. (2008)

Babenko, B., Dollar, P., Belongie, S.: Task specific local region matching. In:
ICCV. (2007)

Cormen, T.H.: Introduction to Algorithms. MIT Press, Cambridge, MA (2001)
Torralba, A., Fergus, R., Weiss, Y.: Small codes and large databases for object
recognition. In: CVPR. (2008)

Salakhutdinov, R., Hinton, G.: Semantic hashing. In: Int. J. of Approximate
Reasoning. (2009)

Raginsky, M., Lazebnik, S.: Locality-sensitive binary codes from shift-invariant
kernels. In: NIPS. (2009)

Broder, A.Z.: On the resemblance and containment of documents. In: In Com-
pression and Complexity of Sequences (SEQUENCES97, IEEE Computer Society
(1997) 2129

Chum, O., Philbin, J., Zisserman, A.: Near duplicate image detection: min-hash
and tf-idf weighting. In: British Machine Vision Conference. (2008)

Chum, O., Perdoch, M., Matas, J.: Geometric min-hashing: Finding a (thick)
needle in a haystack. In: CVPR. (2009) 17-24

Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing for scalable image
search. In: ICCV. (2009)

Silpa-Anan, C., Hartley, R.: Optimised KD-trees for fast image descriptor match-
ing. In: CVPR. (2008) 1-8

Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. Technical
Report 7694, California Institute of Technology (2007)

Mikolajczyk, K., Zisserman, A., Schmid, C.: Shape recognition with edge-based
features. In: British Machine Vision Conference. (2003)



