
Sketch Tokens: A Learned Mid-level
Representation for Contour and Object Detection

Joseph J. Lim
Massachusetts Inst. of Technology

lim@csail.mit.edu

C. Lawrence Zitnick
Microsoft Research

larryz@microsoft.com

Piotr Dollár
Microsoft Research

pdollar@microsoft.com

Abstract

We propose a novel approach to both learning and de-
tecting local contour-based representations for mid-level
features. Our features, called sketch tokens, are learned
using supervised mid-level information in the form of hand
drawn contours in images. Patches of human generated
contours are clustered to form sketch token classes and a
random forest classifier is used for efficient detection in
novel images. We demonstrate our approach on both top-
down and bottom-up tasks. We show state-of-the-art results
on the top-down task of contour detection while being over
200× faster than competing methods. We also achieve large
improvements in detection accuracy for the bottom-up tasks
of pedestrian and object detection as measured on INRIA
[5] and PASCAL [10], respectively. These gains are due to
the complementary information provided by sketch tokens
to low-level features such as gradient histograms.

1. Introduction

For visual recognition, mid-level features provide a
bridge between low-level pixel-based information and high-
level concepts, such as object and scene level information.
Effective mid-level representations abstract low-level pixel
information useful for later classification while being robust
to irrelevant and noisy signals. Mid-level features may be
hand-designed [5, 17] or learned with [16, 33] or without
supervision [15, 40]. They serve as the foundation of both
bottom-up processing, e.g. object detection, and top-down
tasks, such as contour classification [14] or pixel-level seg-
mentation [37] from object class information.

The use of edge information was a popular early ap-
proach to designing mid-level features [19]. This was mo-
tivated in part by the fact that humans can easily interpret
line drawings and sketches [9]. Early edge detectors [3]
were used to find more complex shapes such as junctions
[22], straight lines and curves [8], and were applied to ob-
ject recognition [34], structure from motion [32], tracking
[31], and 3D shape recovery [25].

Figure 1. Examples of sketch tokens learned from hand drawn
sketches represented using their mean contour structure. Notice
the variety and richness of the sketch tokens.

In this work, we propose a novel approach to both learn-
ing and detecting local edge-based mid-level features, and
demonstrate their effectiveness for both bottom-up and top-
down tasks. Our features, called sketch tokens, capture lo-
cal edge structure. The classes of sketch tokens range from
standard shapes such as straight lines and junctions to richer
structures such as curves and sets of parallel lines (Fig. 1).

Given the vast number of potential local edge struc-
tures, we must select an informative subset to represent by
the sketch tokens. We propose a novel approach to defin-
ing token classes using supervised mid-level information,
unlike previous approaches that use hand-defined classes
[39], high-level supervision [16], or unsupervised informa-
tion [15]. The supervised mid-level information is obtained
from human labeled edges in natural images [1]. This data
is both easy to collect and has the potential to general-
ize, since it is not object-class specific [21, 23]. Patches
centered on contours are extracted from the hand drawn
sketches and clustered to form a set of token classes. This
results in a diverse, representative set of sketch tokens. We
typically utilize a few hundred tokens, which captures a ma-
jority of the commonly occurring edge structures (Fig. 1).

1

Our goal is to efficiently predict the occurrence of sketch
tokens given an input color image. We propose a data driven
approach that classifies each image patch with a token label
given a collection of low-level features including oriented
gradient channels [7], color channels, and self-similarity
channels [26]. The token class assignments resulting from
clustering the patches of hand drawn contours provide our
ground truth labels for training. We solve this large multi-
class problem using random decision forests [2, 4]. The
result is an efficient approach that can compute per-pixel
token labelings in about one second per image.

We demonstrate the advantages of our mid-level sketch
tokens on both top-down and bottom-up tasks. We show
top-down results using our mid-level features to locate
pixel-level contours. Using standard datasets [1], we show
state-of-the-art results, while boosting efficiency over 200
fold. We explore the two bottom-up tasks of pedestrian de-
tection and object detection. Results show a large reduc-
tion in error rate over previous state-of-the-art techniques
on the INRIA pedestrian dataset [5]. We additionally show
our mid-level features provide complementary information
to the Histogram of Oriented Gradients descriptor [5] on the
challenging PASCAL object detection dataset [10].

1.1. Related Work
Many of the most commonly used gradient and edge-

based features are hand designed, such as SIFT [17] or HOG
[5]. While numerous detection approaches [5, 11, 7] utilize
such features directly, other papers learn edge-based fea-
tures [27, 38, 21] or class-specific edges [23, 18] using ob-
ject level supervision. Representation based on regions [13]
are also popular. An alternative approach is to learn rep-
resentations directly from pixels via deep networks, either
without supervision [15, 40] or using object level supervi-
sion [16]. Learned features in these approaches resemble
edge filters in early layers and more complex structures in
deeper layers [40]. Our approach to learning a contour-
based representation differs in that we inject mid-level su-
pervision to learn a universal set of sketch tokens.

Data driven edge detection has also been popular. Dollár
et al. [6] cast edge detection as a binary classification prob-
lem and used human labeled edges to train a binary patch
edge classifier. This was extended by [41] who used con-
textual and shape information to refine the edge maps. [39]
applied a similar approach to detect 17 unique local edge
structures including edges, junctions and corners. Instead
of training local detectors directly, Ren and Bo [24] learn
a patch representation through sparse coding and measure
local gradients of the resulting codes. In contrast, our work
aims to learn a richer local representation that captures con-
siderably more mid-level image information.

Algorithmically, our use of decision forests to densely
classify image patches is inspired by Shotton et al.’s work
on texton forests [29, 30]. The key difference is that we are

Figure 2. (Top) Example image and corresponding hand drawn
sketch. (Bottom) Example image patches and their corresponding
hand drawn contours.

learning sketch tokens as opposed to a semantic segmen-
tation. While we utilize fairly standard low-level features
[7, 26] and a well known classification algorithm [2, 4], the
novelty of our approach is in the definition and use of sketch
tokens to effectively encode local image structure.

2. Sketch Tokens
In this section we describe our approach to learning to-

ken classes from hand drawn sketches and for detecting the
tokens in novel images. We show how to utilize these tokens
for contour and object detection in the following sections.
We begin by describing how we define our token classes.

2.1. Defining sketch token classes
Our goal is to define a set of token classes that represent

the wide variety of local edge structures that may exist in an
image. These include straight lines, t-junctions, y-junctions,
corners, curves, parallel lines, etc. We propose an approach
for discovering these classes using human-generated image
sketches [1], see Figure 2.

Let us assume we have a set of images I with a cor-
responding set of binary images S representing the hand
drawn contours from the sketches. The sketches are gener-
ated by asking human subjects to “Divide each image into
pieces, where each piece represents a distinguished thing in
the image.” Further details on the generation of the dataset
can be found in [20].

We define the set of sketch token classes by clustering
patches s extracted from the binary images S. Each patch
sj extracted from image Si has a fixed size of 35 × 35
pixels in our experiments. Furthermore, only patches that
contain a labeled contour at the center pixel are used (there
are approximately two million such patches in the training
set of [20]). To provide invariance to slight shifts in edge
placement, Daisy descriptors [36] are computed on the bi-
nary contour labels contained in sj . Clustering is performed

2

Figure 3. Illustration of the self-similarity features: The L1 dis-
tance

∑
k |fijk| from the anchor cell (yellow box) to the other

5 × 5 cells are shown for color and gradient magnitude channels.
The original patch is shown to the left.

on the descriptors using the K-means algorithm. We use
k = 150 clusters in our experiments except where other-
wise noted. Example cluster means are illustrated in Figure
1. Notice the variety of the sketch tokens, ranging from
straight lines to more complex structures.

2.2. Detecting sketch tokens

Given a set of sketch token classes, we wish to de-
tect their occurrence in color images. We detect the token
classes with a learned classifier. As input, features are com-
puted from color patches x extracted from the training im-
ages I . Ground truth class labels are supplied by the clus-
tering results described above if the patch is centered on a
contour in the hand drawn sketches S, otherwise the patch
is assigned to the background or “no contour” class. The in-
put features extracted from the color image patches x used
by the classifier are described next.

2.2.1 Feature extraction

For feature extraction, we use an approach inspired by
Dollár et al. [7] and compute multiple feature channels per
image where each channel has the same size as the input im-
age and captures a different facet of information. Two types
of features are then employed: features directly indexing
into the channels and self-similarity features.

Our channels are composed of color, gradient, and ori-
ented gradient information in a patch xi extracted from a
color image. Three color channels are computed using the
CIE-LUV color space. We compute several normalized gra-
dient channels that vary in orientation and scale [7, 5, 17].
Three gradient magnitude channels are computed with vary-
ing amounts of blur (we use Gaussian blurs with σ = 0, 1.5
and 5 pixels). Additionally, the gradient magnitude chan-
nels at σ = 0 and σ = 1.5 are split based on orientation
to create four additional channels each for a total of eight
oriented magnitude channels. Finally all channels are post-

L U V

σ = 0 σ = 1.5 σ = 5

θ = 0 θ = π/4 θ = π/2
Figure 4. Frequency of example features being selected by the ran-
dom forest: (first row) color channels, (second row) gradient mag-
nitude channels, (third row) selected orientation channels.

blurred with a σ = 1 Gaussian. Pixels in the resulting chan-
nels serve as the first type of feature for our classifier.

The second type of feature used by our method is based
on self-similarity [26]. It is well known that contours not
only occur at intensity or color edges, but also at texture
boundaries. The self-similarity features capture the por-
tions of an image patch that contain similar textures based
on color or gradient information. We compute texture infor-
mation on am×m grid over the patch, withm = 5 yielding
7× 7 cells for 35× 35 patches. For channel k and grid cells
i and j, we define the self-similarity feature fijk as:

fijk = sjk − sik, (1)

where sjk is the sum of grid cell j in channel k. An illus-
tration of self-similarity features is shown in Fig. 3.

Since fijk = −fjik and fiik = 0, the total number of
self similarity features per channel is given by

(
m·m
2

)
. For

m = 5 this yields 300 features per channel. For computa-
tional efficiency, the sums sjk over an entire image can be
computed efficiently by convolving each channel by a box
filter of width equal to the cell size.

In summary, we utilize 3 color channels, 3 gradient mag-
nitude channels, and 8 oriented gradient channels for a total
of 14 channels. For a 35× 35 patch this gives 35 · 35 · 14 =
17150 channel features and 300 · 14 = 4200 self-similarity
features, yielding a 21350 dimensional feature vector (the
learned model will use only a small subset of these fea-
tures). Computing the channels given a 640×480 input im-
age takes only a fraction of a second using optimized code
from Dollár et al. [7] available online1.

1http://vision.ucsd.edu/˜pdollar/toolbox/doc

3

http://vision.ucsd.edu/~pdollar/toolbox/doc

Figure 5. Illustration of the sketch token responses for four tokens. Notice the high selectivity of each sketch token (best viewed in color.)

2.2.2 Classification

Two considerations must be taken into account when choos-
ing a classifier for labeling sketch tokens in image patches.
First, every pixel in the image must be labeled, so the clas-
sifier must be efficient. Second, the number of potential
classes for each patch ranges in the hundreds. In this work
we use a random forest classifier, since it is an efficient
method for multi-class problems [2, 4, 28].

A random forest is a collection of decision trees whose
results are averaged to produce a final result. We randomly
sample 150,000 contour patches (1000 per token class) and
160,000 “no contour” patches (800 per training image) for
training each tree. The Gini impurity measure is used to se-
lect a feature and decision boundary for each branch node
from a randomly selected subset of

√
F of F possible fea-

tures. The leaf nodes contain the probabilities of belonging
to each class and are typically quite sparse. We use a col-
lection of 25 trees trained until every leaf node is pure or
contains fewer than 5 examples. The median depth of the
tree is 20 although some branches are substantially deeper.

Training each tree takes ∼30 minutes and trees are
trained in parallel. All model, feature and random forest
parameters were set using the BSDS validation set [1].

To gain understanding into which features the decision
trees use, we plot the frequency of feature use in Figure 4.
Notice the heavy use of the image gradients in the center of
the patch based on gradient scale. Gradient orientations are
also used in an intuitive manner. We show an illustration of
the probabilities for several different sketch tokens in Figure
5. Notice the high selectivity of the different sketch tokens.

3. Contour detection
We now describe our approach to detecting contours us-

ing a top-down approach. Sketch tokens provide an estimate

of the local edge structure in a patch. However, contour de-
tection only requires the binary labeling of pixel contours.
We show that computing mid-level sketch tokens provides
accurate and efficient predictions of low-level contours.

Our random forest classifier predicts the probability that
an image patch belongs to each token class or the negative
set. Since each token has a contour located at its center, we
can compute the probability of a contour at the center pixel
using the sum of token probabilities. If tij is the probability
of patch xi belonging to token j, and ti0 is the probability
of belonging to the “no contour” class, the estimated prob-
ability of the patch’s center containing a contour is:

ei =
∑
j

tij = 1− ti0. (2)

Once the probability of a contour has been computed at each
pixel, a standard non-maximal suppression scheme may be
applied to find the peak response of a contour [3].

3.1. Contour detection results
We test our contour detector on the popular Berkeley

Segmentation Dataset and Benchmark (BSDS500) [20, 1].
The BSDS500 dataset contains 200 training, 100 valida-
tion, and 200 testing images. In Figure 6 and Table 1, we
compare our contour detection method against competing
methods using standard evaluation metrics [1]. Our method
achieves state-of-the-art results among all local methods,
and achieves nearly the accuracy of global approaches. Ad-
ditionally, our contour detector shows improved recall and
precision at both ends of the precision-recall curve in Figure
6. Qualitative comparisons are shown in Figure 10.

Our detector processes a 480×320 image in under 1 sec-
ond. This is over 200× more efficient than approaches with
similar accuracy, see Table 1. Most computation is spent in
the sketch token detection stage, which can be parallelized.

4

Method ODS OIS AP Speed
Human .80 .80 - -
Canny .60 .64 .58 1/15 s

Felz-Hutt [12] .61 .64 .56 1/10 s
gPb (local) [1] .71 .74 .65 60 s

SCG (local) [24] .72 .74 .75 100 s
Sketch tokens .73 .75 .78 1 s
gPb (global) [1] .73 .76 .73 240 s

SCG (global) [24] .74 .76 .77 280 s

Table 1. Contour detection result on BSDS500: We achieve state-
of-the-art results among all local methods. The methods shown in
the last two rows perform complex global reasoning given local
edge responses, resulting in slightly better performance. However,
our approach is 240-280x faster than these global approaches.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

iso−F

Recall

P
re

c
is

io
n

[F = 0.80] Human

[F = 0.73] Sketch Tokens

[F = 0.74] SCG − Ren, Bo (2012)

[F = 0.73] gPb−owt−ucm − Arbelaez, et al. (2010)

[F = 0.64] Mean Shift − Comaniciu, Meer (2002)

[F = 0.64] Normalized Cuts − Cour, Benezit, Shi (2005)

[F = 0.61] Felzenszwalb, Huttenlocher (2004)

[F = 0.60] Canny

Figure 6. Precision/Recall curve for contour detection. Note that
while our method achieves similar F-measure (ODS) to gPb-owt-
ucm [1] and SCG [24], we achieve improved results with both low
and high recall. This results in high average precision (AP) scores.

Using just k = 1 clusters, which is equivalent to classi-
fying pixels as edge versus non-edge, reduced performance
considerably from ODS=.73 to ODS=0.68. This is compa-
rable to the results of [6] who used a similar binary classi-
fication approach. Using k = 8 was sufficient to achieve
reasonable edge detection results (ODS=.72).

4. Object detection
We demonstrate our mid-level sketch token features

on two object recognition datasets; the INRIA pedestrian
dataset [5] and the PASCAL 2007 object recognition dataset
[10]. Results on both are described next.

4.1. INRIA pedestrian

For pedestrian detection we use an improved implemen-
tation of Dollár et al. [7] that utilizes multiple image chan-
nels (e.g. color, gradient magnitude and oriented gradi-

channels # channels miss rate
LUV 3 72.7%
M+O 7 20.7%

LUV+M+O 10 17.2%
ST 151 19.5%

ST+LUV 154 16.5%
ST+LUV+M+O 161 14.7%

Table 2. Accuracy of [7] combined with sketch tokens on INRIA
[5] with varying choice of channels. The addition of our new mid-
level sketch token features gives a significant boost to accuracy.

10−2 10−1 100 101 102

.05

.10

.20

.30

.40

.50

.64

.80
1

false positives per image

m
is

s
ra

te

82% Shapelet
80% PoseInv
72% VJ
58% FtrMine
46% HOG
44% LatSvm−V1
43% HikSvm
40% Pls
39% HogLbp
36% MultiFtr
31% FeatSynth
25% MultiFtr+CSS
22% ChnFtrs
21% FPDW
20% LatSvm−V2
15% Ours

Figure 7. Mean log-average miss rate on the INRIA pedestrian
dataset: notice the considerable improvement over previous tech-
niques using our approach. At a 90% detection rate, we achieve a
10× reduction in FPPI over the previous state-of-the-art.

ents) as features for a boosted detector (we utilize similar
channels for computing tokens). In addition to standard
channels, we add channels corresponding to our sketch to-
ken probability maps (computed at twice the resolution of
the original images). Unlike traditional channels that cap-
ture low-level information, our channels represent the more
complex edge structures that may exist in the scene.

Results are shown in Table 2 and Figure 7. The base-
line approach of [7] uses 10 channel features (LUV+M+O)
and achieves a log-average miss rate (MR) of 17.2%. Our
approach using 150 sketch tokens plus the negative “no con-
tour” feature achieves a MR of 19.5%. Combining sketch
tokens and the 10 low-level features achieves 14.7%; a large
reduction in error over the baseline approach of [7].

The MR vs. false positive per image rate for numer-
ous state-of-the-art methods is shown in Figure 7. The
plot shows large improvement over the best previously pub-
lished results, while older approaches such as HOG [5] and
VJ [35] perform significantly worse.

An interesting question is how the number of sketch to-
kens affects detection results. In Figure 8, we show results
using various numbers of token classes. Notice that using
increasing numbers of tokens leads to improved accuracy.

5

plane bike bird boat bottle bus car cat chair cow

HOG 19.7 43.9 2.2 4.8 13.4 36.6 40.2 5.4 10.9 15.7

ST 17.8 41.1 4.8 5.7 11.1 31.9 33.8 5.1 10.8 16.1

ST+HOG 21.9 48.5 6.3 6.4 14.6 41.5 43.3 6.1 15.7 19.2

table dog horse moto person plant sheep sofa train tv

HOG 7.5 2.1 41.9 30.9 23.9 3.4 9.3 14.8 26.9 32.4

ST 7.4 3.1 32.9 27.0 20.9 4.6 8.6 10.4 18.9 26.3

ST+HOG 14.2 3.8 46.1 34.5 30.9 8.1 15.3 18.9 30.3 36.6

Table 3. PASCAL 2007 results for linear SVMs: Sketch to-
kens+HOG outperforms HOG on all classes by 3.8 AP on average.

Figure 8. Mean log-error rates on the INRIA dataset using different
numbers of sketch tokens. Notice that capturing a large number of
varying edge structures leads to a large increase in performance.

4.2. PASCAL VOC 2007

Our final set of results use the PASCAL VOC 2007
dataset [10]. The dataset contains real world images with 20
labeled object categories such as people, dogs, chairs, etc.
We perform experiments with the deformable parts model
(DPM) of Felzenszwalb et al. [11], a widely used state-of-
the-art approach for object detection. DPMs use Histogram
of Oriented Gradients (HOG) [5] as input features to a la-
tent linear SVM. We propose adding our sketch tokens to
the HOG features for training the DPMs.

Unlike the boosting technique we used for pedestrian de-
tection [7], linear SVMs are highly sensitive to how the fea-
tures are normalized. For normalization we use a technique
similar to that used by the HOG descriptor [5]. The sketch
token features are divided into a grid with cells of size 4×4
pixels. Each cell is normalized based on its 8 neighbors in
a 3 × 3 grid using the R-HOG technique [5]. Specifically,
for each cell we normalize its values four times using sets
of 2 × 2 cells, truncate the four normalized values at 0.2
and average them together. Finally, the features values are
scaled to have similar ranges to that of the HOG descriptor.

Results are shown in Tables 3 and 4 for DPMs using
the root node only and the full part model, respectively.
While individually HOG features outperform sketch tokens,
in nearly all cases top Average Precision (AP) scores are
achieved with a combination of HOG and sketch tokens.
This demonstrates that sketch tokens may provide a valu-

plane bike bird boat bottle bus car cat chair cow

HOG 27.9 56.5 1.9 6.2 21.2 48.2 52.7 7.6 17.7 21.2

ST+HOG 23.8 58.2 10.5 8.5 27.1 50.4 52.0 7.3 19.2 22.8

table dog horse moto person plant sheep sofa train tv

HOG 14.7 3.0 55.4 42.9 33.9 6.0 11.9 21.7 43.2 37.7

ST+HOG 18.1 8.0 55.9 44.8 32.4 13.3 15.9 22.8 46.2 44.9

Table 4. PASCAL 2007 results for DPMs: On average Sketch To-
kens+HOG outperformed HOG by 2.5 AP.

Figure 9. Sketch token weight visualization: We visualize the top
5 sketch tokens multiplied by the learned weight for each cell. No-
tice the many sketch tokens with rich edge structures that are used.

able complementary source of information over the stan-
dard HOG descriptor. We visualize the weights learned by
the SVM classifiers for different objects in Figure 9. Notice
the object structures, and the use of non-trivial tokens.

5. Discussion
Sketch tokens provide a novel approach to feature learn-

ing. Unlike many previous methods for generating mid-
level features [16, 33, 15, 40], we use supervised mid-level
information. Gathering mid-level information from human
subjects is a difficult task since such information may not
be accessible. Discovering new sets of observable mid-level
information that may be used for feature learning is an inter-
esting and open question. Perhaps figure/ground or texture
attributes may prove equally informative.

Sketch tokens provide a rich source of information for
a variety of tasks. We’ve explored several in this paper, but
other tasks may also benefit. For instance, better contour de-
tection may be useful for many image editing tasks. Tokens
tailored to individual categories may also improve detection
by adapting to the category’s specific characteristics.

6

(a) Original image (b) Ground truth (c) SCG [24] (d) Sketch Tokens

Figure 10. Examples of contour detection on the BSDS500 [1]. For Sketch Tokens we define edge strength according to Equation 2 and
apply smoothing and standard non-maximal suppression to obtain peak edge responses [3]. Note how our method captures finer details
such as the structure of Sydney Opera House on the 1st row and human legs on the 2nd row.

7

In conclusion, we described a new mid-level feature
called sketch tokens. The tokens are learned from images
with ground truth contours and are fast to compute. Using
the learned tokens we demonstrated state-of-the-art results
on several datasets ranging from contour to object detection.

References
[1] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour

detection and hierarchical image segmentation. PAMI, 33,
2011. 1, 2, 4, 5, 7

[2] L. Breiman. Random forests. Machine Learning, 45(1):5–
32, Oct. 2001. 2, 4

[3] J. Canny. A computational approach to edge detection.
PAMI, 8(6):679–698, November 1986. 1, 4, 7

[4] A. Criminisi, J. Shotton, and E. Konukoglu. Decision forests:
A unified framework for classification, regression, density
estimation, manifold learning and semi-supervised learning.
Foundations and Trends in Computer Graphics and Vision,
7(2-3):81–227, February 2012. 2, 4

[5] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In CVPR, 2005. 1, 2, 3, 5, 6

[6] P. Dollár, Z. Tu, and S. Belongie. Supervised learning of
edges and object boundaries. In CVPR, 2006. 2, 5

[7] P. Dollár, Z. Tu, P. Perona, and S. Belongie. Integral channel
features. In BMVC, 2009. 2, 3, 5, 6

[8] R. O. Duda and P. E. Hart. Use of the hough transforma-
tion to detect lines and curves in pictures. Commun. ACM,
15(1):11–15, Jan. 1972. 1

[9] M. Eitz, J. Hays, and M. Alexa. How do humans sketch
objects? ACM Trans. Graphics, 31(4), 2012. 1

[10] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL visual object classes (VOC)
challenge. IJCV, 88(2):303–338, June 2010. 1, 2, 5, 6

[11] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part
based models. PAMI, 32(9):1627–1645, 2010. 2, 6

[12] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-
based image segmentation. IJCV, 59(2):167–181, 2004. 5

[13] C. Gu, J. J. Lim, P. Arbeláez, and J. Malik. Recognition
using regions. In CVPR, 2009. 2

[14] B. Hariharan, P. Arbelaez, L. Bourdev, S. Maji, and J. Malik.
Semantic contours from inverse detectors. In ICCV, 2011. 1

[15] G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algo-
rithm for deep belief nets. Neural Comp., 18(7), 2006. 1, 2,
6

[16] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. Handwritten digit
recognition with a back-prop. network. In NIPS, 1990. 1, 2,
6

[17] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 60(2):91–110, 2004. 1, 2, 3

[18] J. Mairal, M. Leordeanu, F. Bach, M. Hebert, and J. Ponce.
Discriminative sparse image models for class-specific edge
detection and image interpretation. In ECCV, 2008. 2

[19] D. Marr and E. Hildreth. Theory of edge detection. Pro-
ceedings of the Royal Society of London. Series B, Biological
Sciences, 207(1167):187–217, 1980. 1

[20] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database
of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecologi-
cal statistics. In ICCV, 2001. 2, 4

[21] A. Opelt and A. Zisserman. A boundary-fragment-model for
object detection. In ECCV, 2006. 1, 2

[22] L. Parida, D. Geiger, and R. Hummel. Junctions: detection,
classification, and reconstruction. PAMI, 20(7), 1998. 1

[23] M. Prasad, A. Zisserman, A. Fitzgibbon, M. Kumar, and
P. Torr. Learning class-specific edges for object detection
and segmentation. CVGIP, 2006. 1, 2

[24] X. Ren and B. Liefeng. Discriminatively trained sparse code
gradients for contour detection. In NIPS, 2012. 2, 5, 7

[25] L. G. Roberts. Machine perception of 3d solids. In J. T. T.
et al., editor, Optical and Electro-optical Information Pro-
cessing, pages 159–197. MIT Press, 1965. 1

[26] E. Shechtman and M. Irani. Matching local self-similarities
across images and videos. In CVPR, 2007. 2, 3

[27] J. Shotton, A. Blake, and R. Cipolla. Contour-based learning
for object detection. In ICCV, 2005. 2

[28] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,
R. Moore, A. Kipman, and A. Blake. Real-time human pose
recognition in parts from single depth images. In CVPR,
2011. 4

[29] J. Shotton, M. Johnson, and R. Cipolla. Semantic texton
forests for image categorization and segmentation. In CVPR,
2008. 2

[30] J. Shotton, J. M. Winn, C. Rother, and A. Criminisi. Tex-
tonboost for image understanding: Multi-class object recog-
nition and segmentation by jointly modeling texture, layout,
and context. IJCV, 81(1):2–23, 2009. 2

[31] J. Sullivan and S. Carlsson. Recognizing and tracking human
action. ECCV, 2002. 1

[32] C. Taylor and D. Kriegman. Structure and motion from line
segments in multiple images. PAMI, 17(11), 1995. 1

[33] L. Torresani, M. Szummer, and A. Fitzgibbon. Efficient ob-
ject category recogn. using classemes. In ECCV, 2010. 1,
6

[34] S. Ullman and R. Basri. Recognition by linear combinations
of models. PAMI, 13(10), 1991. 1

[35] P. A. Viola and M. J. Jones. Robust real-time face det. IJCV,
57(2):137–154, 2004. 5

[36] S. A. J. Winder, G. Hua, and M. Brown. Picking the best
DAISY. In CVPR, 2009. 2

[37] J. Winn and N. Jojic. LOCUS: Learning object classes with
unsupervised segmentation. In ICCV, 2005. 1

[38] B. Wu and R. Nevatia. Detection and tracking of multi-
ple, partially occluded humans by bayesian combination of
edgelet part det. IJCV, 75(2):247–266, 2007. 2

[39] T. Wu, G. Xia, and S. Zhu. Compositional boosting for com-
puting hierarchical image structures. In CVPR, 2007. 1, 2

[40] M. Zeiler, G. Taylor, and R. Fergus. Adaptive deconvolu-
tional networks for mid and high level feature learning. In
ICCV, 2011. 1, 2, 6

[41] S. Zheng, Z. Tu, and A. Yuille. Detecting object bound-
aries using low-, mid-, and high-level information. In CVPR,
2007. 2

8

