Appendix: Parameter Sweeps
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Figure 1. Splitting Parameter Sweeps. See text.

We set all parameters with the help of the BSDS vali-
dation set. In Figures 1-3 we explore the effect of choices
of splitting, model and feature parameters. For each ex-
periment we train on the 200 image BSDS training set and
measure edge detection accuracy on the 100 image BSDS
validation set (using the standard ODS performance met-
ric). All results are averaged over 5 trials.

By default all parameters are set to the values described
in the main text (and indicated by orange markers in the
plots). Then, keeping all but one parameter fixed, we ex-
plore the effect on edge detection accuracy as a single pa-
rameter is varied. For computational reasons, however, for
the validation experiments we sample fewer image patches
(10° versus 109) and train fewer trees (4 versus 8).

With these default setting, SE achieves an ODS of ~.70
on the validation set. This is lower than the performance
of our full model (ODS=.74) for three reasons: (1) we use
fewer patches and trees, (2) the validation set is slightly
more challenging than the test set, and (3) we use a faster
evaluation procedure (evaluating at only 10 thresholds).

Splitting Parameters: In Figure 1 we explore how best
to measure information gain over structured labels. Re-
call we utilize a two-stage approach of mapping Y — Z
followed by Z — C. Plots (a) and (b) demonstrate that
m = | Z| should be large and k = |C| small. Results are ro-
bust to both the discretization method and the discrete mea-
sure of information gain as shown in plots (c) and (d).

Model Parameters: In Figure 2 we plot the influence of
parameters governing the model and training data. Plots (a)
and (b) show the effect of image and label patch sizes on
accuracy, 32 X 32 image patches and 16 x 16 label patches
perform best. Plots (c)-(e) show that increasing the number
of patches, training images, and trees, respectively, leads to
improved accuracy. Plot (f) shows that training each tree
with a fraction of the total features has only a minor impact
on accuracy (but results in proportionally lower memory us-
age). In (g) and (h) we see that deep trees pruned so every
node has at least 8 training samples give best performance.
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Figure 2. Model Parameter Sweeps. See text.

Feature Parameters: Figure 3 shows how varying the
channel features affects accuracy. We refer readers to the
main text for details, here we only note that performance is
relatively insensitive to a broad range of parameter settings.
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Figure 3. Feature Parameter Sweeps. See text.



