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Abstract

In this paper, we describe a model-based approach to
object recognition. Spatial relationships between matching
primitives are modeled using a purely local bi-gram rep-
resentation consisting of transition probabilities between
neighboring primitives. For matching primitives, sets of
one, two or three features are used. The addition of dou-
blets and triplets provides a highly discriminative matching
primitive and a reference frame that is invariant to similar-
ity or affine transformations. The recognition of new objects
is accomplished by finding trees of matching primitives in
an image that obey the model learned for a specific object
class. We propose a greedy approach based on best-first-
search expansion for creating trees.

Experimental results are presented to demonstrate the
ability of our method to recognize objects undergoing non-
rigid transformations for both object instance and category
recognition. Furthermore, we show results for both unsu-
pervised and semi-supervised learning.

1. Introduction

Matching a discrete set of local patch-based features is
a useful technique for object recognition. The effectiveness
of these methods relies mainly on the discrimitive power of
the features’ descriptors. This is best demonstrated by the
effectiveness of “bag of words” approaches [15, 17]. Re-
cently, methods that additionally model the spatial relation-
ship of features have shown improved results. This is es-
pecially true for category recognition where the appearance
of features across intra-class objects can vary more dramati-
cally than object instance recognition. Several types of spa-
tial models have been developed, including the constellation
model [8, 19], star models [5, 6], rigid 3D models [16], and
image-centric or warping techniques [3, 7]. These meth-
ods all create a global model for an object, whether they are
parts-based, image-based or full 3D models.

In this paper, we propose using a local spatial model
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without any explicit global model of the object. We
only model the relationship of neighboring features with-
out knowledge of their global context. An illustrative anal-
ogy between our approach and the task of language mod-
elling can be made. In language modeling, the goal is to
model the spatial relationship of words in sentences. Most
global methods attempt to model the entire sentence struc-
ture, noun phrase, verb phrase, etc. Local models only at-
tempt to model the structure of neighboring words, such as
the m-gram model [2]. An n-gram model uses the previ-
ous n — 1 words in a sentence to predict the probability
of the next word. In the language modeling community,
these simplistic local techniques have shown respectable re-
sults in comparison to the more complex global techniques.
Similarly to the n-gram language model, we propose a bi-
gram model for object recognition. That is, each “word”
or matching primitive in our model is only dependent on a
single word preceding it in the model.

A critical design element is the choice of matching prim-
itive. This primitive should be both discriminative between
different types of objects and predictive of the local struc-
ture within an object. Previous methods [3, 5, 8] typically
use single features, such as SIFT [12] for this purpose. In
addition to using single features, we propose using sets of
two or three neighboring features as our matching primitive
[17, 11]. By combining features into sets, we increase their
discriminative power over single features. Multiple feature
positions can also be used to compute robust similarity and
affine transformations to better predict the local position of
neighboring features.

Unlike the 1D problem of language modeling, in which
a strict ordering of words is enforced in a string, words or
matching primitives in object recognition have no explicit
order. Moreover, multiple matching primitives can be de-
pendent on each other. To handle this more complex rela-
tionship, we propose modeling the structure of objects using
a tree instead of a string. This provides an efficient repre-
sentation with an inherent ordering that allows for multiple



Figure 1. Example of two sets of feature triplets assigned to the
same words from the Caltech 101 face data set. Upper row corre-
sponds to one word, and lower row corresponds to another.

. J‘ s

matching primitives to be dependent on a single parent.

Our algorithm is split into several steps. First during
the learning phase, a model of each object is found from
a set of training images. This model consists of a set of
frequently occurring match primitives along with the pre-
diction of their neighboring primitives. Only the local rela-
tionships are stored, without the global context from which
they came. Second given a testing image, a set of matching
primitives are found. Finally, we search for a tree structure
of matching primitives that obey the local model found in
the learning phrase.

An outline of the paper is as follows. We first describe
how we create an object model given a set of training im-
ages in Section 2. Next, in Section 3 we discuss how we use
these models to recognize objects in images. This includes
two steps, finding a coherent tree of matching primitives
and predicting the object given the tree structure. Finally,
we show results on several object categories.

2. Object Model

In this section, we describe our local bi-gram object
model. This model only represents the relationships be-
tween neighboring match primitives in an image. These lo-
cal relationships are based on the features’ descriptors, as
well as their local positions and orientations. By only mod-
eling the local interactions of features, a compact model for
deformable objects with large variation of appearance can
be created.

We describe our object model in two steps. First, we de-
scribe our matching primitives and the vocabulary of words
created from them. Second, we learn the local spatial rela-
tionships between the words.

2.1. Feature Singlets, Doublets and Triplets

A matching primitive should be both discriminative be-
tween different types of objects, and repeatable within a
specific class of object. Previous research has used single
features such as SIFT [12], corner detectors [9, 14], maxi-
mally stable extremal regions [13, 15], and salient regions
[10]. The use of single features provides a high-level of

repeatability. However, the occurrence of these features is
not unique to a specific object. This is especially true when
the features are discretized [15, 18] into a fixed number of
clusters. To increase the discriminative power of matching
primitives, multiple features can be used, such as doublets
[17] or triplets [1 1]. While this does reduce their repeata-
bility, their uniqueness to a single object class is increased.

We propose three approaches using either sets of one,
two or three SIFT [12] features called singlets, doublets and
triplets as our matching primitive. The use of single SIFT
features has shown good performance for a variety of object
recognition tasks [12, 17, 18]. The grouping of SIFT fea-
tures provides additional contextual information. By anal-
ogy, in language models, seeing “white” or “house” doesn’t
necessarily identify an article’s topic as politics, but see-
ing “white” and “house” closely together greatly increases
this probability. Similarly in object recognition, the co-
occurrence of features increases their discriminative power
over each individual feature. Doublets and triplets are found
by grouping features that lie within a certain distance of
each other both spatially and in scale space. More specifi-
cally, if a feature f; has a scale s;, the other features in the
set must lie within distance acs; of each other in image space
and 13 in log scale space.

To increase matching efficiency and to reduce model
complexity, we discretize the set of feature descriptors into
a set of fixed size [15, 17, 18]. This set is created by clus-
tering the training feature descriptors using K-means. For
our experiments we set ' = 1000. As reported in [ 7], this
approximate size provides a good tradeoff between repeata-
bility and descriptiveness.

Our vocabulary is created from the n-tuple (n €
{1,2,3}) of cluster indices assigned to the feature descrip-
tors. That is, for doublet d;, with two features f! and f? as-
signed to clusters ¢} and ¢?, we assign word w; = {c}, c?},
w; € C x C. We assume indices of the clusters are in nu-
merical order, i.e. ¢} < ¢2. To remove matching ambiguity,
all doublets with repeated cluster indices are removed. Sin-
glet and triplet words are similar except they contain 1 or
3 distinctive cluster indices. Using this technique we can
group singlets, doublets and triplets assigned to the same
words together. Examples of triplets assigned to the same
words are shown in Figure 1. The largest theoretical size of
our vocabulary is (%) for doublets and ('%°) for triplets.
In practice, an object will only contain a small fraction of
these sets.

2.2. Learning Local Relationships

Our next task is learning the local relationships of neigh-
boring matching primitives. Two doublets are said to be
neighboring if they share a single feature (Figure 2(a)) while
triplets share two features (Figure 2(b)). Singlets are neigh-
boring if they lie within a certain distance in image and scale
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Figure 2. Example of neighboring doublets (a) and triplets (b). The
transition features from doublet d; to do and triplet ¢; to ¢y are
shown in red.
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Figure 3. Illustration of doublet (a) and triplet (b) positions in the
canonical frame, projection of transition features from neighbors,
different colors representing transition features from different K-
mean cluster (c, d), clustering after mean shift (e, f), and the final
model after thresholding cluster size (g, h).

Canonical

space (same criterion as the construction of doublets). In
each case, there exists one feature in each set not shared
by the other set. This feature is called the transition fea-
ture of its set with respect to the transition from the other
set. More specifically, the transition feature of doublet d;

with respect to the transition from doublet d; is denoted as
fi(5) € {fL, f?}, and similarly for pairs of singlets and
triplets. Example transition features can be seen in red in
Figure 2.

Our local bi-gram model consists of a set of transition
probabilities between neighboring primitives, for a given
object or an object category O;. For simplicity, we first
discuss how to compute the doublet transition probabil-
ity. Since neighboring doublets share all but one feature
between them, the task of computing the probability of
p(d;ild;, O;) can be reduced to computing p(f;(5)|d;, O:)
for all d; € N;, where IN; are all neighbors of d;. A feature
f contains its location x, orientation ¢ and cluster index c,
f ={z,0,c}. Soadoublet d; consists of two features fj1
and fj2 with two positions x]l and x?, orientations Hjl- and HJQ-,
and cluster indices ¢} and ¢3. In our model the doublet d; is
identified by its corresponding word w; = {c}, c?} Thus,

p(fi(7)ld;, Or) = (D
p({x,»(j),ei(j),ci(j)}|{a:]1,m?,9]1-,9]24,11)]4},01)

Spatial relationships are modeled conditional on word
assignment, and are enforced in a canonical frame, where
:cjl projects to (0,0) and x? to (0,1) (Figure 3(a)). This pro-
vides invariance up to a similarity transformation (transla-
tion, rotation and scale). Let, A; be the 3 X 3 matrix trans-
forming homogeneous coordinates le and xf to (0,0) and
(0,1) respectively. If #;(5) and 6;(;) are feature f;(j)’s po-
sition and orientation in the canonical frame defined by A,

p(f:()ld;, 00) = p({2:(5). 0:(§), ci(§) Yw;, O) (2

We learn the value of equation (2) using the training data
set. First, a set of transition features F'(w;) is found from all
neighboring doublets to doublets which are assigned to the
word w; in the training data. Next, each transition feature
frx € F(w;) is projected into the canonical frame based on
the neighboring doublets’ relative positions (Figure 3(c)).

To represent the set of possible transition features, sev-
eral models may be used, such as a local Gaussian perturba-
tion model or a Gaussian Mixture Model (GMM). We pro-
pose using a GMM. A GMM allows us to model groups of
transition features assigned to the same words using a Gaus-
sian with computed means and variances.

Since the number of Gaussians needed to represent the
distribution is unknown and varies across doublets, we clus-
ter the transition features using mean shift [4]. For mean
shift, we cluster features based on their appearance, posi-
tion and orientation. Our iterative update equation for mean
shift is,
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The function N is the standard Normal distribution over
the spatial coordinates in the canonical frame. Standard de-
viations of 0, = 0.4 and g9 = 0.257 are used for position
and orientation in the canonical frame. Features are clus-
tered together based on their assigned cluster indices, i.e.
d(ci,cx) = 1if ¢; = ¢ and O otherwise. Thus, only fea-
tures assigned to the same cluster indices with similar posi-
tions and orientations are clustered together. An illustrative
example of this clustering can be seen in Figure 3(e).

To ensure the compactness of the model, only doublets
which occur at least ¥ times in the training data are kept.
Further, clusters of transition features that have less than w
members are discarded (Figure 3(g)). In our experiments
¥ =3and w = 3.

After mean shift, the transition probabilities are repre-
sented by a set of Gaussians, each of which is factored
into appearance, position and orientation components. This
results in our transition probability for p(f;(j)|d;) being
equal to the summation over all the Gaussian components
index by a,

p(fi(d)ld;, Or) = “4)
Yap(a)A(fi(4), ca) / ,
N(£:(§); £ar Xa(a))N(0:(5); 0a, 06(a)?)

The similarity in appearance is computed using
A(fi(4),¢cq), which is described later in Section 4.
The spatial covariance matrix X.(a) and orientation
variance og(a)? are computed separately for each Gaussian
component in the GMM based on the training data. p(a) is
the prior probability for each component in the GMM.

The transition probabilities for neighboring feature sin-
glets and triplets are learned in the same manner as
those learned for doublets with the only exception be-
ing how the transform A; is computed. The similarity
transform for the canonical frame of singlets is computed
from the feature’s position, scale and orientation. For
triplets, the three feature positions are projected to the po-
sitions (0, 0), (—0.5,+/3/2), (0.5,1/3/2) corresponding to
an equilateral triangle in the canonical frame (Figure 3(b)).
This provides invariance to an affine transformation, and not
just a similarity transformation. Once the transition features
are projected into the canonical frame, the GMM is com-
puted as described above (Figure 3(d.f,h)).

Figure 4, illustrates the set of singlets, doublets and
triplets found using our model on the Caltech 101 face data
set. The color encodes the frequency of occurrence for each

matching primitive in our model. Notice the triplets with
high occurrence are centered on the face and absent from
the background image. Singlets are less discriminative and
scattered over the face and background image. Using 216
training images with approximately 1000 features each, the
size of the models found is summarized in Table 1.

Model | #of MPs | # of Trans. Features
Singlet 573 354
Doublet 12261 16.1

Triplet 7426 9.2

Table 1. Size of models for Caltech 101 face data set. The table
shows the number of matching primitives with unique words and
the average number of transition features per matching primitive.

(@

Figure 4. Frequency of occurrence for singlets (b), doublets (c) and
triplets (d) in the face model generated from the Caltech 101 face
data set. Blue = low occurrence, Red = high occurrence. Singlets,
doublets and triplets are represented by circles, lines and triangles
respectively.

3. Finding Objects

Our goal is to find objects in a new image given a set of
matching primitives. Given our local object model, this task
is transformed into finding a set of neighboring primitives
that obey our model. Finding this set of neighboring match-
ing primitives could be accomplished with several tech-
niques. For instance, a Markov Random Field with edges
between neighboring primitives could be created. Loopy
belief propagation could then be used to update the like-
lihoods of each primitive belonging to an object. In this
paper, we use a more efficient and simpler technique using
trees of matching primitives. The children in a tree allow
us to model the many possible neighbors a primitive might
have in its 2D neighborhood. As a result, our goal is trans-
formed into finding a tree of matching primitives with high
likelihood of belonging to a specific object.



This task is split into two steps. First, finding a tree
of neighboring matching primitives (singlets, doublets or
triplets) that have a high probability given our object mod-
els. Second, given a set of matching primitives, determining
the object to which they belong. We begin by describing
how to compute the probability of an object given a tree,
followed by a greedy algorithm for finding trees.

3.1. Probability of an Object Given a Tree

Let us assume we have a tree G' of matching primitives.
For clarity, we’ll assume our matching primitive is a doublet
for this section and the next. However, the same techniques
also apply to singlets and triplets. Using Bayes Theorem we
find,

p(O1|G) o< p(G|O)p(Or) &)

The prior probabilities p(O;) for the objects O; can be as-
sumed to be uniform, unless addition information is known.
For instance, if it is known the image was taken indoors, ob-
jects that are more likely to be found indoors can be given
higher prior probabilities. Besides the objects that have
been modeled, there is also a prior background probability.
This background probability p(BG) typically has a value
much higher than the objects’ prior probabilities, since for
most images the majority of doublets and triplets will lie on
unknown objects.

In the tree, each doublet d; has a parent P(d;), with the
root node of the tree having no parent P(d;) = 0. Given
its tree structure, the likelihood of G can be computed as a
product of conditional probabilities,

p(G|Oy) Hp (di| P(dy), On) (6)

We refer to the probability of the root node of the tree as the
initial probability, and all remaining probabilities as transi-
tion probabilities within the tree.

Since the tree provides an implicit ordering of the prim-
itives, the above model can be viewed as a bi-gram model
applied to a tree structure. That is, each primitive depends
on its preceding primitive, i.e. its parent in the tree.

The transition probabilities can be computed using equa-
tion (4) from our object model. The initial probability
p(d;|O;) of the root node is the normalized frequency count
of doublets assigned to the same word as d; within the ob-
ject training set.

3.2. Finding Trees of Matching Primitives

Previously, we described how to compute the likelihood
of an object given a tree. In this section, we describe a
method for finding a tree with matching primitives belong-
ing to a single object.

We construct a tree using a greedy algorithm. We be-
gin by computing the initial probability for each matching

primitive present in the test image. The initial probabilities
are computed by marginalizing over all possible objects O
in our database:

p(di|I) = ZPC“OZ (Oul1) (7)

We use the doublet with the highest likelihood as the root
node in our tree. After the tree has grown to its full size,
the next most likely doublet is found that wasn’t used in a
previous tree. This process is repeated until there are no
remaining doublets.

After the root node is found, we iteratively expand our
tree, picking the most likely doublet to add to our tree at
each time step. Given our current tree G, we want to com-
pute the most likely doublet d; given the current likelihood
of the objects O. This can be computed by marginalizing
over all objects,

p(d;|Gy) = Zpd|P O)p(OIlGy)  (8)

Our new tree G141 is created by adding the doublet d; to
the tree G4 that maximizes equation (8). Once a new dou-
blet has been added to a tree, the likelihood of the objects
within O can be updated using equations (5) and (6) .

Once the likelihoods of the objects are updated, the like-
lihoods of all possible neighboring doublets to the tree are
also updated. New doublets are then iteratively added to
the tree until no neighboring doublets in the image have a
higher likelihood of belonging to an object than to the back-
ground. Since the number of possible doublets can be quite
large, empirically computing the background probability is
infeasible. In practice, setting the background probability
to a constant € provides reasonable results.

If the final probability of a tree belonging to an object is
greater than it belonging to the background, an object is said
to be found. Since the prior probability of the background
is typically much higher than that of other objects, a tree
must grow to a moderate size before an object’s probability
is higher than the background.

4. Implementation Details

In this section, we discuss the implementation details
of our algorithm. For interest point detectors, we used ei-
ther SIFT [12] or Harris corner detection across multiple
scales [1]. Experimentally, we found the feature’s orienta-
tion computed using these methods to be unstable for object
category recognition. In our experiments, the orientation
was computed by finding the angle at which the feature’s
descriptor best matched that a descriptor cluster mean. For
K-means clustering of descriptors, the assignment to clus-
ters was also found by matching over all orientations. For
efficiency, only 16 orientations were used.



The function A(f;,c) in equation (4) is computed by
finding the three closest cluster centers ¢;(1) ,¢;(2) and
¢;i(3) to f;’s descriptor over all orientations. If d(f;,c) is
the distance between f;’s descriptor and cth cluster mean,

d(fi,c) —d(fi,ci(1))
(fi,ci(3)) —d(fi,ci(1))

Thus, the closest cluster ¢;(1) has a value of 1 while the
second cluster ¢;(2) varies between 0 and 1. For all other
values of ¢, A(f;,¢) = 0. Using this soft assignment tech-
nique, we can reduce the occurrence of misclassifying fea-
ture descriptors to cluster indices.

For our experiments, the probability of a transition fea-
ture belonging to the background, used to decide when a
tree should stop growing, was set to p(f;(5)|BG) = 0.05
for singlets and p(f;(j)|BG) = 0.2 for doublets and
triplets. The value is lower for singlets since they occur
in general with higher frequency.

Alfire) = 1= max(0, - ) ©

5. Experimental Results

To demonstrate the matching and learning performance
of our algorithm we provide experiments on several objects
using both semi-supervised and unsupervised learning.

5.1. Semi-supervised Learning

Our first experiment tests feature singlets, doublets and
triplets on on two data sets: Faces 1999 and Leaves 1999
(www.vision.caltech.edu/html-files/archive.html).  These
data sets were chosen because interest points could be re-
liably found on them. The SIFT interest point detector was
used for the face data set. For the leaves data set, the Har-
ris corner detector was used since it produces more stable
interest points at object boundaries. We use the same exper-
imental setup as [8] and [3] for comparison. The face data
set consists of 216 training images and 217 testing images.
The leaves data set was randomly split into two groups of 93
images. For generating ROC curves and Equal Error Rate
(EER) values, 300 images from the Caltech background
data set were used. Our results are summarized in Tables
2 and 3. In all but one test, large trees where found with the
number of unique features in the trees ranging from 55.9 to
31.7. In contrast, tree sizes for background images range
from O to 4 features. For the leaf data set, few neighboring
triplets were found and tree sizes remained small. The EER
are similar for all matching primitives with doublets and
singlets slightly outperforming the others on the face and
leaves data sets respectively. For the face data set, images
in which the lighting was similar (i.e. a flash was used) pro-
duced repeatable interest points and large matching primi-
tive trees were found. Matching primitives associated with
faces under different illuminations had fewer training im-
ages and were less likely to be added to the model. This

resulted in reduced recognition results. For comparison,
the following EER rates were achieved using other meth-
ods: 96.4% [8], 98.2% [5] and 98.2% [3]. A standard bag-
of-words technique using normalized frequency counts of
words achieved EERs of 64.5%, 70.0% and 96.8% for sin-
glets, doublets and triplets respectively. The high result for
triplets demonstrates their discriminative power even with-
out the use of trees. For the leaf data set an EER of 92.1%,
similar to our singlet result, was achieved by [3], while bag-
of-words produced EERs ranging from 71.0 to 81.7. ROC
curves for our results can be seen in Figure 5. Example
face and leaf detections for singlets, doublets and triplets
are shown in Figures 6 and 7.

MP EER | BoW ERR | Tree size # | BG tree size
Singlet | 91.2 64.5 55.9 4.2
Doublet | 93.1 70.0 55.9 2.1
Triplet | 92.2 96.8 39.7 0.2

Table 2. Results for Faces 1999 data set: EER, EER for bag-of-
words model, the average number of unique features in trees for
face images, and the average number of unique features in trees
for background images.

MP EER | BoW EER | Tree Size | BG Tree Size
Singlet | 92.5 71.0 43.8 4.3
Doublet | 87.1 80.7 31.7 4.2
Triplet | 86.0 81.7 5.6 0.1

Table 3. Results for Leaves 1999 data set: EER, EER for bag-of-
words model, the average number of unique features in trees for
face images, and the average number of unique features in trees
for background images.
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Figure 5. ROC curves for Face 1999 and Leaves 1999 data sets for
singlets, doublets and triplets.

5.2. Unsupervised Learning

To test the ability of our algorithm to handle noisy data,
we reduced the face training data set to 100 images. Addi-
tionally, we added 150 background images to the training
data set to act as distracters. Our results are shown in Table
4 and Figure 8. For singlets the results are almost identical,
even with only 40% of the training data containing faces.



Figure 6. Example results for Face 1999 data set. Largest tree
found is shown in red for singlets (left, dots), doublets (center,
lines) and triplets (right, triangles). Similar results were achieved
for the unsupervised training data set.

The results for doublets and triplets slightly degrade, but
still provide EERs of 87% or better. For comparison, the
constellation model proposed by [8] produced an EER of
approximately 79% using 40% face images.

MP EER | Face Tree Size | BG Tree Size
Singlet | 88.5 49.4 4.6
Doublet | 89.9 49.7 2.8
Triplet | 87.6 19.0 0.1

Table 4. Results for Face 1999 data set with only 40% of training
images containing faces: EER, average number of unique features
in trees for face images and average number of unique features in
trees for background images.

5.3. Discovering Objects

In our final test, we demonstrate the ability of our al-
gorithm to build coherent trees from unstructured data.
We captured 18 images with random backgrounds contain-
ing three objects. The objects include a rotating globe, a
woman’s face and a deformable t-shirt. Each image contain-

Figure 7. Example results for Leaves 1999 data set. Largest tree
found is shown in red for singlets (left, dots), doublets (center,
lines) and triplets (right, triangles).
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Figure 8. ROC curves for Face 1999 data sets when the training
data set only contains 40% faces for singlets, doublets and triplets.

ing between 0 and 3 objects. A doublet model was built for
the images, and all trees with a probability greater than 0.5
were found (e = 10°p(0)). Next, all trees which shared at
least 20% common words for their doublets were grouped
together. Without supervision, 3 groups were found that
corresponded to the three objects. Furthermore, every oc-
currence of the objects was found, even though the objects
deformed (face and t-shirt) and pairs of specific instances
of the object may not share features (rotating globe). Half
the images in the data set are shown in Figure 9, with the
objects labeled by color.

6. Discussion

A drawback of our approach is its reliance on the re-
peatability of interest point detectors. Without additional
information, interest points rely on low-level information
for detection. This can lead to unreliable results for many
object categories, such as bicycles, cars, airplanes, etc. One



Figure 9. Objects discovered by grouping trees that shared similar
words. Groups are shown by color, globe (red), face (green) and
t-shirt (blue).

possible extension to our approach is to search for missing
features in their predicted locations.

Our approach relies on local information to discriminate
between objects. It is possible for false positives to be found
in scenes with repetitive textures, in which large trees can
be constructed using repeating words. This is especially a
concern for less discriminative matching primitives such as
singlets.

7. Conclusion

In this paper, we presented a local feature-based model
for object recognition. Our bi-gram model consists of tran-
sition probabilities between neighboring matching primi-
tives. Several types of matching primitives were explored,
including feature singlets, doublets and triplets. Objects are
found by constructing trees of matching primitives that are
likely given the learned model.

Results show the model is able to generate large trees of
matching primitives corresponding to objects across a vari-
ety of objects. Object models can also be found using unsu-
pervised learning, with only a small reduction in matching
accuracy. Finally, we demonstrated the ability of the algo-
rithm to discover objects unsupervised, even with deform-
ing and rotating objects.
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