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Exploring Tiny Images: The Roles of
Appearance and Contextual Information for
Machine and Human Object Recognition
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Abstract—Typically, object recognition is performed based solely on the appearance of the object. However, relevant information
also exists in the scene surrounding the object. In this paper, we explore the roles that appearance and contextual information
play in object recognition. First, through machine experiments and human studies, we show that the importance of contextual
information varies with the quality of the appearance information, such as an image’s resolution. Our machine experiments
explicitly model context between object categories through the use of relative location and relative scale, in addition to co-
occurrence. With the use of our context model, our algorithm achieves state-of-the-art performance on the MSRC and Corel
datasets. We perform recognition tests, for machines and human subjects, on low and high resolution images, which vary
significantly in the amount of appearance information present, using just the object appearance information, the combination
of appearance and context, as well as just context without object appearance information (blind recognition). We also explore
the impact of the different sources of context (co-occurrence, relative-location and relative-scale). We find that the importance of
different types of contextual information varies significantly across datasets.

Index Terms—Object recognition, context, tiny images, blind recognition, image labeling, human studies
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1 INTRODUCTION

TRADITIONALLY, research on recognizing object cate-

gories in images has focussed on appearance informa-

tion pertaining only to the object itself. For instance, parts-

based approaches [1], [2] recognize objects by localizing

a set of parts corresponding to the local appearance and

structure of the object. Popular datasets such as the Caltech

datasets [3], [4] have been constructed specifically for such

a treatment, where the object to be recognized is found in

the center and occupies a significant portion of the image.

In natural images, relevant contextual information about

the object also lies in the scene surrounding the object.

Recently, many works [5], [6], [7], [8], [9], [10], [11], [12],

[13], [14], [15], [16], [17] have attempted to move beyond a

purely appearance-based approach by incorporating context

using several approaches.

There exist several scenarios, as shown in Fig. 1 in

which an object’s appearance alone is clearly insufficient

for recognition. An example is shown in Fig. 1 (left),

where without the context of the rest of the scene (top),

it would be hard to recognize the keyboard (bottom). If

the amount of intra-class appearance variation is high, or

the inter-class appearance variation is low, context may be

needed to disambiguate an object’s category. For example,

as shown in Fig. 1 (center), clothing varies drastically in
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Fig. 1. Illustration of a few scenarios where contextual
information is necessary for effective recognition. Left:
Impoverished appearance information makes it hard to
recognize the keyboard in the image without contextual
information; Center: diverse appearance information
for the category clothes makes it difficult to build a
consistent appearance model to describe it; Right:
Appearance information is similar for two semantically
distinct categories of TV screen and computer monitor
thus requiring contextual information to disambiguate.

appearance and is mainly defined by its position relative to

the body. In Fig. 1 (right), some object categories such as

sky and water, or TV screen and computer monitor have

very similar appearance, and may only vary in their relative

locations and object surroundings. Other scenarios include

those where the amount of appearance information may be

limited due to bad image quality, viewing of a scene from

a distance, low image resolution, occlusion, etc.

In this paper, we explore object level context in the

scenario of impoverished image data, where context is

necessary. Specifically, our goal is object recognition in

extremely low resolution images. The need for effective

computer vision in low resolution images has many prac-
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Fig. 2. Example of recognition using appearance alone
(a,d), using context alone, i.e. blind recognition (b,
e) and context and appearance combined (c, f) for
low resolution images (a, b, c) and high resolution
images (d, e, f). For low resolution images, context
is necessary for recognition given the small amount
of information provided by the appearance, which is
not the case for high resolution. Hence, we advocate
exploring context in low resolution images.

tical standings. Low resolution images are space efficient

and allow for much faster processing and streaming. Some

devices such as older cell phone cameras and web cameras

often produce low quality and low resolution images.

Images of far away scenes, or images of cluttered complex

scenes result in the effective resolution of the individual

objects being quite small1.

Human studies performed in this paper verify that ap-

pearance information alone is not enough to accurately

recognize objects in low resolution images. However, with

the use of context, we find that humans can recognize

objects quite reliably, as also observed by Torralba et
al. [19]. In fact, for the task of blind recognition where

appearance information is withheld and only contextual

information is given to the subject, recognition accuracy is

roughly equal to that of using appearance alone. Through

additional human studies we show the relative importance

of various types of contextual information, such as co-

occurrence, relative location and relative scale information.

These studies verify that the task of recognition in low

resolution images is an interesting venue for modeling

context.

To study the automatic recognition of objects in low

resolution images, we propose a segmentation-based ap-

proach. Each segment is assigned an object label based

on appearance and contextual information learned from a

training data set. The beliefs in a segment’s labels are

computed using a fully connected Conditional Random

Field (CRF) with the segments acting as nodes. Context

is modeled using the pairwise potentials of the CRF. This

formulation allows us to use a wide variety of contextual

information, and to compare against human performance in

various studies.

Our contributions in this paper are as follows: We

perform object recognition in low resolution images; an

1. This is demonstrated in the objects marked ‘difficult’ in the popular
PASCAL visual object category recognition dataset (see Fig. 23).

appropriate scenario for exploring context in which context

is necessary for accurate recognition. We model context ex-

plicitly, and incorporate inter-object relationships in terms

of relative location and scale in addition to object co-

occurrence. To explore the utility of appearance and con-

textual information we perform tests on both low and high

resolution images, using just object appearance information,

using context without object appearance (blind recognition),

and the combination of appearance and context, as shown

in Fig. 2. These tests were performed both in human

and machine experiments. State-of-the-art performances are

achieved on the MSRC [20] and Corel [21] datasets. We

also explore the roles of each of the different sources of

context such as relative location and scale for machine

(MSRC and Corel datasets) and human recognition (MSRC

and PASCAL [18] datasets), and report some interesting

findings.

The rest of the paper is organized as follows: Section 2

outlines some existing related work. Section 3 describes

our machine context model. Section 4 describes the ex-

perimental set up for our human studies and machine

experiments, and provides results and related analysis on

the roles of appearance and contextual information in low

resolution and high resolution images. Section 5 describes

our machine and human-studies experimental set-up and

results for exploring the impact of different sources of

context for humans and machines. Section 6 raises some

interesting points of discussion, followed by a conclusion

in Section 7.

2 RELATED WORK

2.1 Context:

Context is believed to play an important role in recognition

for humans [22]. Modeling meaningful contextual informa-

tion for better image understanding has received significant

attention in computer vision literature [23], [34]. A variety

of information sources may be used to model context.

Global scene information, such as global texture [8], [17]

or 3D scene information [6] can be used as context. Scene

context can be used to restrict the set of possible objects

that may be present in the scene, or to reduce the possible

locations an object may be present [6], [8], [9], [16], [17].

Context may also be modeled locally. The works of

Shotton et al. [11] and Fink et al. [13] modeled context

using local textures, while He et al. [10] proposed the use

of multi-scale features. Several approaches [10], [11], [12],

[14] model short-range interactions for the regularization

of region or object labels. The background information

surrounding an object has also been proposed for better

localization [24]. In our work, we provide human ex-

periments that examine scene contextual information, and

local contextual information. For example, subjects may be

shown an entire image, or just the pixels contained within

a rough bounding box of an object. However, the majority

of our work examines the contextual relationships between

objects.
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Numerous works attempt to model the contextual rela-

tionships between objects [5], [7], [26], [27]. The early

work of Singhal et al. [15], used hand-modeled spatial

relationships between objects. Torralba et al. [7] detect

easier to recognize objects first, which in turn aid in the

detection of harder objects. Similarly, Heitz et al. [31] use

easier to recognize textured regions in a scene (‘stuff’) to

better detect objects (‘things’). Hoiem et al. [6] use 3D

information from multiple object types by taking advantage

of viewpoint information about the scene. The use of a CRF

to enforce co-occurrence relationships between numerous

objects was proposed by Rabinovich et al. [5] and was

later expanded to include spatial relationships [27], [42]

and hierarchical models [53]. In our work, we also propose

the use of CRFs to model the contextual interactions of ob-

jects in our machine experiments. Recently, discriminative

models have also been proposed to model the spatial layout

of objects [55]. A study of various contextual models for

object recognition is provided by Divvala et al. [34].

There exists several other areas of research exploring

contextual information. An unsupervised approach to learn-

ing object relationships is proposed by Parikh et al. [28],

while Lee et al. [32] discovers novel object categories using

the context provided by known categories. Gallagher et
al. [29] and Lin et al. [57] propose the use of other

types of contextual information, such as social context for

analyzing personal photo collections. Yao et al. [30] exploit

contextual interactions between the human pose and objects

for activity analysis. The potential of contextual information

can be explored by combining multiple visual sources [33],

[34]. While most works leverage context for higher level

tasks such as recognition and detection, Parikh et al. [25]

exploit context for the low-level task of computing saliency

maps for images.

2.2 Segmenting objects:
In this paper, we focus on the task of detecting and

segmenting objects in a scene using contextual information.

Several other approaches have also been proposed for the

detection and segmentation task. A pre-computed color-

based segmentation of the image may be assigned object

labels using appearance and contextual information [5],

[27], [42]. Pixel-wise segmentation and detection of objects

may be performed by grouping patches using mean-shift

[49]. Segmentations can be computed by regularizing the

local object labeling of pixels or patches using MRFs [11],

aspect models [50] or hierarchical CRFs [53]. Top-down

cues for image segmentation are explored by He et al. [51].

Gould et al. [52] learn the relative locations of objects

and use this information to improve upon appearance-based

segmentation.

2.3 Low resolution images:
One conclusion of our paper is that the use of context

is critical when appearance information is impoverished,

such as when images are of low resolution. The use of low

resolution images has also been explored by Torralba et

al. [19] for the recognition of scene categories and object

detection using a large database of labeled tiny images.

Efros et al. [35] recognize human actions in distant videos

where the effective resolution of sportsmen is very small.

Human accuracies have been studied in low resolution

images for face recognition [36], [37], scene recogni-

tion [38], [39], [19], [40] and more recently for object de-

tection [41], [19] and segmentations [19]. However, studies

that separate the roles of context from that of appearance as

the amount of appearance information varies, and evaluate

the impact of the different sources of context, have not been

conducted.

3 APPROACH
In this section, we describe our machine approach to recog-

nizing objects in low resolution images [42]. Descriptions

of our human studies, and comparisons to our machine

algorithms are given in later sections.

Our goal is to utilize context for recognizing objects in

very low resolution images. We obtain these low resolution

images by down-sampling images of higher resolution.

The aspect ratio of the original image is maintained while

reducing the larger dimension to 32 pixels. Torralba et
al. [19] show that humans can recognize objects in 32×32
images, which our human studies also confirm. Further

down-sampling results in a significant degradation in per-

formance [19], [40]. We also apply our method to the

original resolution images to study the trade off between

appearance and context in different scenarios. The follow-

ing discussion is common for images of either resolution.

The task we consider is to semantically label every

pixel in an image. We approach this task at the region

or segment level since good spatial support is shown to

significantly help recognition [43], [44]. Hence, our task is

to recognize the content of every segment in an image from

a pre-determined list of C possible classes. In addition to

the appearance information pertaining to the region itself,

which we refer to as the data term, we wish to capture the

interactions among the different segments through context.

We model this through a fully connected pairwise Con-

ditional Random Field (CRF) similar to [5], where each

node corresponds to a segment in the image, and the edges

correspond to pair-wise contextual interactions between the

segments. In our experiments, the number of segments per

image was on average 7 and never exceeded 17, which

made such a model feasible. For more complex scenarios

containing a larger number of segments, the structure of

the graphical model should be intelligently chosen or learnt

from data.

We define the conditional probability of our class labels

given the segments within our CRF as

P (c|S) =
1
Z

N∏

i=1

Ψi(ci)
N∏

i,j=1

Φij(ci, cj), (1)

where Z is the partition function. The data term Ψi(ci)
computes the probability of class ci given the appearance

of segment Si ∈ {S1, . . . , SN}. The pair-wise potentials
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Φij(ci, cj) capture the contextual information between seg-

ments using co-occurrence statistics from training data at

different locations and scales.

3.1 Appearance
Our data term Ψi(ci) = p(ci|Si) depends on the texture,

shape and color of the segment. To incorporate the tex-

ture and shape information, we use the TextonBoost [11]

code [45] with one modification. TextonBoost incorporates

context through the appearance of surrounding texture

patches. Since we are interested in modeling context at the

object level and not implicitly through features, we trained

TextonBoost on individual objects and not entire images,

using the ground truth segmentations. Thus any contextual

information captured by TextonBoost from surrounding

objects was removed. In our experiments 700 rounds of

boosting were performed instead of 5000 as used in [11].

The resulting class likelihoods for each pixel found by

TextonBoost are averaged across each segment to obtain

a vector with length C equal to the number of possible

classes.

To incorporate color, we train a Gaussian Mixture Model

(GMM) for each class. We used 7 Gaussians per class in

the three-dimensional RGB space. The likelihoods for each

pixel are averaged across the segments to obtain a length

C vector. In order to combine the results of TextonBoost

and the color GMM to obtain Ψi(ci), we use an approach

similar to He et al. [10]. The two C length vectors are

concatenated and passed through a multi-layer perceptron

neural network with C outputs. We used 20 hidden layer

nodes in our experiments with a sigmoid transfer function.

3.2 Context
The edge-interactions Φij(ci, cj) capture the contextual

information between segments Si and Sj through co-

occurrence counts given the segments’ locations and scales.

This is modeled as

Φij(ci, cj) = [φij(ci, cj) + ε]η. (2)

In all our experiments, ε was fixed to be 1 and corresponds

to a weak Dirichlet prior. η was 0.02, which controls the

effect of context with respect to the data term. Further,

φij(ci, cj) = κ(ci, cj)λij(ci, cj)ϕij(ci, cj), (3)

where κ(ci, cj) captures the likelihood of classes ci and

cj co-occurring in the image, λij(ci, cj) represents the

likelihood of segments Si and Sj co-occurring at their

observed locations given assignments to classes ci and

cj , and similarly ϕij(ci, cj) represents the likelihood of

segments Si and Sj co-occurring with their observed scales

given assignments to classes ci and cj . We describe these

next.

3.2.1 Co-occurrence:
κ(ci, cj) is the empirical probability of classes ci and cj co-

occurring in an image. This is learnt through MLE counts

from the labeled training data.

3.2.2 Location:
We model the location of a segment in an image using a

Gaussian Mixture Model with L = 9 components. For our

experiments the Gaussian means are centered in a 3×3 grid

with standard deviations in each dimension equal to half the

distance between the means. We define the value αl(li) as

the average likelihood of Si’s pixels being in component

l ∈ L. Since most images have a horizontal layout we

also tried using only 3 bins spaced vertically apart, but the

results were significantly worse. The value of λij(ci, cj) is

computed as

λij(ci, cj) =
L∑

li=1

L∑

lj=1

αl(li)αl(lj)θl(li, lj |ci, cj), (4)

where θl(li, lj |ci, cj) are parameters estimated from

training data through MLE counts. More specifically,

θl(li, lj |ci, cj) is the empirical probability of the segments

Si and Sj occurring at locations li and lj given their

assignments to classes ci and cj . It should be noted that this

is a joint distribution, and thus includes both the absolute

location and relative location statistics i.e. θl(li, lj |ci, cj)
combines the information θl(li|ci) and θl(lj |li, ci, cj). Since

the absolute location is measured relative to the image, the

statistic θl(li|ci) can be viewed as contextual information

relative to the entire image.

3.2.3 Scale:
The scale is defined as the proportion of the number of

pixels in the segment with respect to the number of pixels

in the image. As a result, the scale for each segment has a

value between 0 and 1. Similar to location, we model the

scale using a GMM. The GMM has K = 4 components

with means evenly spaced between 0 and 1. The standard

deviation of the components are set to half the distance

between the means. We define αs(si) as the likelihood of a

segment belonging to scale si. ϕij(ci, cj) is then computed

as

ϕij(ci, cj) =
K∑

si=1

K∑

sj=1

αs(si)αs(sj)θs(si, sj |ci, cj), (5)

where θs(si, sj |ci, cj) are parameters estimated from train-

ing data through MLE counts. Again, θs(si, sj |ci, cj) is the

empirical probability of segments Si and Sj having scales

si and sj given their assignments to classes ci and cj . As

with location, the absolute and relative scale statistics are

both captured here.

3.2.4 Inference
We use Loopy Belief Propagation to perform approxi-

mate inference on the CRF using a publicly available

implementation [46]. After convergence, the label with

maximum belief is assigned to the segment. A sampling

based inference technique could also be used as in [5].

Using equation (3) we maintain the simplicity of the

model proposed in [5], which uses just co-occurrence

counts, while capturing richer information through relative
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Fig. 3. Low resolution images from the MSRC (top)
and Corel (bottom) datasets. The larger dimension is
32 pixels. The objects are often very small, for instance
there are only 4 pixels in the faces in the top left image.

location and scale statistics. The proposed model also

allows for the straightforward incorporation of additional

contextual information, such as relative 3D orientations

if available, using the same formulation. We do not do

any parameter learning to explicitly increase the likelihood

of the training data under our model. Although the cur-

rent treatment suffices for our purposes, explicit parameter

learning such as in [5] may further boost performance.

4 LOW RESOLUTION VS. HIGH RESOLU-
TION

In this paper we present two sets of results on human and

machine accuracies. The first set of experiments studies the

effect of context on recognition in high resolution vs. low

resolution images. In the following section, we present our

second set of results studying the use of various types of

contextual information.

We study recognition on high and low resolution images

using the MSRC dataset [20] and a subset of the Corel

dataset [21]. The MSRC dataset contains 591 images with

pixel-wise labels coming from 23 classes. Following pre-

vious works, we remove 2 classes (horses and mountain)

because of very few training instances. The Corel dataset

consists of 100 images with labels coming from 7 classes.

As stated earlier, we work with images at their original

resolution (∼ 320×320) pixels, as well as at low resolution

(∼ 32×32 pixels). In both datasets, a random subset of 45%
of the images were used for training, 10% for validation

and the rest for testing, while maintaining consistent class

distributions in these three sets, similar to [11]. We show

sample low resolution test images from both datasets in

Fig. 3. We first present our machine vision results, followed

by a description of our human studies setup and associated

results, and finally some analysis of the results obtained.

4.1 Machine Results
For consistency with the human studies (described later),

we use the ground-truth segmentations of the images for

our first set of experiments (later results use automatic

segmentation). We experiment with low and high resolution

images, using appearance information alone, contextual

information alone (blind recognition) and both appearance

and context (entire image). In the appearance-only scenario,

the MAP estimates of the data terms were used to label the

Fig. 4. The recognition accuracies of human subjects
and machine on low and high resolution images from
the MSRC and Corel datasets using appearance alone
(app), blind recognition using context alone (blind) and
both appearance and context (all).

segments. For blind recognition, the data term correspond-

ing to the segment to be recognized was set to a uniform

distribution before running inference on the CRF2.

The results obtained on the MSRC and Corel datasets are

shown in Fig. 4. We use a random subset of 265 images

of the MSRC dataset. The results on other random splits

are consistent with those shown here. There are several

observations we can make. First, the need for context is

minimal in the original high resolution images. Appearance

alone performs at 86% accuracy on the MSRC dataset,

with context increasing performance by 3%. Secondly,

appearance provides less information in low resolution

images as seen by the drop in accuracy from 86% to

65%. In the scenario of low resolution images, we see

that combining appearance and context significantly boosts

performance over each individually, to 78% for MSRC and

87% for Corel. It is interesting to note that identical context

models were used for images of both resolutions, while the

appearance information was trained separately.

We also perform the same experiments with automatic

segmentations. We use the Felzenszwalb and Hutten-

locher [48] segmentation algorithm (example segmentations

are shown in Fig. 5). We find that the use of automatic

segmentation does not harm performance significantly. This

can be partly attributed to the fact that the training images

were also segmented using the same algorithm, resulting

in a better match between the training and testing images.

Moreover, the ground truth segmentations provided with the

MSRC dataset are quite coarse, resulting in the automatic

segmentations not being qualitatively very different. Our

results are shown in Table 1 along with a comparison to

results from previous works when available. In addition

to the segment-wise accuracies metric we have used so

far, we report pixel-wise accuracies as well. To obtain a

pixel-wise label map from our model, all pixels falling

within a segment were assigned the segment’s predicted

label. Only the pixels that were assigned a label in the

ground-truth labeling were considered while computing

2. Malisiewicz et al. [47] also evaluate their proposed contextual model
and other baselines in a blind recognition setting.
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TABLE 1
Comparisons of accuracies *

MSRC Corel

pixel segment** pixel segment

Shotton’06 [11] 58(72) – (71) – (75) –

Yang’07 [49] 62(75) – – –

Verbeek’07 [50] 64(74) – – –

He’04 [10] – – 81(80) –

He’06 [51] – – – (81) –

Rabinovich’07 [5] – – (68) – –

Gould’08 [52] – (77) – – –

Ladicky’09 [53] 75(86) – – –

High 85(91) 84(89) 94(93) 95(93)

Low 81(83) 77(81) 86(86) 85(84)

. * Different splits may have been used for training and testing data
** Segment-wise accuracies may not be directly comparable because the
exact settings under which the accuracies were computed may differ

the accuracy (void pixels were ignored). For our own

algorithm, we report results on original (high) resolution

images that all other works use, as well as on low resolution

images. We report average class-wise accuracies, as well as

overall accuracies (within parentheses). Even when using

low resolution images, our algorithm outperforms previous

works on these datasets.

We believe this is due to several reasons. He et al. [10]

and Shotton et al. [11] make decisions at the level of

pixels or small patches, while we do so on segments which

requires only a few decisions per image. This also allows

us to train on segments making the training information

more reliable due to inherent aggregation and grouping.

Our explicit use of color was found to give a significant

boost in performance. A notable observation is that the

difference between our average class-wise accuracies and

overall accuracy is not very large. Since we model context,

we have good performances consistently across categories,

including those that have varied appearances and are also

less frequent that appearance-based approaches perform

poorly on.

4.2 Human Studies Set-up
Our human studies were performed on the MSRC dataset

using 11 subjects. The task assigned to them was to identify

the outlined segment in the displayed image. We replicate

the machine experiments in our human studies. Each sub-

ject had to complete two sessions. The first session was on

the low resolution images and the second on the original

images. In each session, there were three scenarios under

which the subjects had to recognize the segments. The first

studied appearance-based recognition by only displaying

the segment to be recognized without the rest of the image,

Fig. 2(a, d). The second studied blind recognition in which

the subject was shown the image with the pixels removed

from the segment to be recognized, Fig. 2(b, e). The final

Fig. 5. Illustrations of automatic segmentations.

Fig. 6. A snapshot of the interface used for human
studies on low resolution images for blind recognition.

scenario displayed the entire image allowing the subject

to use both appearance and contextual information for

recognition, Fig. 2(c, f). In each scenario the images were

displayed with the segment outlined, as well as without the

segment outlined to avoid distraction. For low resolution

images, the images were displayed at four different scales

(32× 32, 64× 64, 128× 128 and 256× 256) using bicubic

interpolation so that the subjects could focus on whichever

scale they desired, without increasing the amount of infor-

mation being displayed [19]. The list of possible classes

from which the subjects could choose was displayed below

the images, as shown in Fig. 6. Each subject was asked to

recognize 70 segments for each scenario for each resolution

(a total of 420 segments per subject). The segments to be

recognized were selected randomly from a total of 650
segments in the 265 images per resolution. For consistency,

we use the same 265 images of the MSRC dataset for

testing as were used in the above machine experiments.

On average, subjects took 35 minutes to complete the

entire study. The segment boundaries were marked using

the ground truth segmentations provided with the MSRC

dataset.

4.3 Human Studies Results

The accuracies of the subjects, computed as average class-

wise accuracies, are shown in Fig. 4. We see very similar

trends in the human numbers as with those from the ma-

chine experiments. The need for context is minimal in the

original high resolution images. Appearance alone performs

at 96% accuracy with context increasing performance by
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2%. Secondly, appearance provides less information in

low resolution images as seen by the drop in accuracy

from 96% to 66%. Interestingly, blind recognition using

context alone provides a similar accuracy of 67% for

low resolution images. The combination of appearance

and context increases accuracy by a statistically significant

amount to 89%. This is in agreement with Torralba et al.’s
observations that human recognition in 32×32 images does

not reduce drastically as compared to full resolution images,

and we demonstrate here that this is due to inclusion of

context. These experiments further support our claim that

low resolution images are an interesting venue for modeling

context.

It should be noted that the subjects were given a choice of

21 possible category labels. Experiments in which the set of

labels is unknown and determined by the subject may yield

different results. For some objects the segments are not

exact so small amounts of surrounding information, such as

grass, may be present for the appearance only tests. Finally,

for the task of blind recognition the information inside the

segment was removed. However, the rough shape of the

segment was still visible and in some cases can supply

appearance based information, making the experiment not

completely ‘blind’. As a result, the accuracies of the blind

recognition tests may be artificially high.

4.4 Humans vs. Machine:
Fig. 7 shows the (normalized) confusion matrices of hu-

mans and machines on the low resolution images of the

MSRC dataset (since the accuracies on the high resolution

images are high, we do not show those confusion matrices).

While the confusion matrixes show some commonalities,

there are significant differences. The four categories from

the MSRC dataset that got the highest boost in performance

on low resolution images by incorporating context for the

human subjects were found to be Body, Face, Water and

Boat. The top four categories for the machine were Body,

Boat, Building and Sheep, but not Face and Water. This is

due to the fact that appearance based recognition for Body

and Boat was poor (0% and 30%), having little potential

to boost performance of contextually complementary cate-

gories such as Water and Face. Moreover, the latter were

already reliably recognized (85% and 100%), leaving little

room for further improvement.

4.5 High Resolution vs. Context
To compare the category pairs in the human studies that

benefited the most from incorporating context to those

that benefited the most from incorporating high resolution

information, we determine the proportion of the top n
(for n = 50 & 200) category pairs with most reduction

in confusion that are in common between the two. A

similar analysis is repeated for the machine experiments.

The results obtained can be seen in Fig. 8. We find that the

two are in fact correlated, which indicates that the category

pairs with low accuracies using low resolution appearance

information, can benefit from additional information - be
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Fig. 7. Confusion matrices of the human studies and
machine experiments on the MSRC dataset using the
ground truth segmentations (low resolution images).

Fig. 8. Evaluating the overlap between pairs of cate-
gories that benefitted the most from incorporating con-
text and from incorporating high resolution information,
in humans studies and machine experiments.

it in the form of context, or high resolution appearance

information. And as our earlier experiments show, once

we incorporate high resolution information, context does

not provide further boosts in performance. This once again

stresses the potential of using low resolution images to

model context, as opposed to high resolution images.

4.6 Human Subjects Behavior

We analyzed several aspects of our human studies, that we

summarize below:

• The median time taken by subjects to respond to low-

resolution images with missing data (appearance alone

or context alone) was ≈ 4.75 seconds, while that for

high resolution images or entire low-resolution images

was ≈ 2.75 seconds. This is expected since low-

resolution images with missing information are am-

biguous. It is interesting that the time taken on entire

low-resolution images is comparable to that of high

resolution images containing contextual information

alone.

• If we compare the time taken by subjects, the con-

sistency in responses, and their accuracies (Fig. 4),

we see that they all follow a similar trend. Subjects

are inaccurate, take longer and are inconsistent among

themselves when shown low resolution images with

missing information. When shown high resolution

images with appearance information alone or entire
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images, subjects are accurate, quick and consistent

among themselves. We quantify this correlation and

indeed find that these quantities are highly correlated

(pair-wise correlation coefficient of 0.98).

• We find that the correlation between the average

time taken by each of the subjects (averaged across

the different scenarios), and their overall accuracy is

about −0.4, indicating that how long a subject takes

to respond is not an indicator of their accuracy on

the tasks. We should note that the difficulty of the

tasks themselves has been marginalized out (since we

average across the different scenarios).

• We hypothesized that subjects may improve in accu-

racy as they perform more tests on the same dataset.

Surprisingly, we find that the accuracy of the human

subjects in the first half of each scenario was not lower

than their accuracies in the second half.

5 DIFFERENT SOURCES OF CONTEXT

In this section, we describe human and machine experi-

ments using different sources of context for recognition.

These include the use of co-occurrence, relative location

and relative scale of objects. In these studies, we use the

MSRC [20], Corel [21] and PASCAL 2007 [18] datasets.

The MSRC and Corel datasets have shape information

available from ground truth segments, where PASCAL 2007

only has object bounding boxes. As a result, the PASCAL

dataset does not supply shape information for the task of

blind recognition. However, some contextual information

may be available in the bounding box when performing

appearance-based recognition. The number of categories

is similar between the MSRC and PASCAL datasets (21

categories in MSRC, 20 categories in PASCAL 2007),

while Corel has 7 categories. The images in PASCAL 2007

are more natural with a large portion of many images not

containing any of the 20 objects of interest. Machine exper-

iments were performed on MSRC and Corel, and human

experiments were performed on MSRC and PASCAL 2007.

We do not perform machine experiments on PASCAL

for a couple of reasons. First, given the poor performance

of state-of-the-art techniques at recognizing objects in the

PASCAL dataset, attempting the task in 32 × 32 images

is likely to lead to very noisy predictions. Inconclusive

results would be generated by the contextual models given

the poor initial information. Second, and perhaps more

importantly, as also noted recently by Choi et al. [54], the

PASCAL dataset does not contain interesting contextual

interactions. About 50% of the PASCAl images contain

only one object (as compared to 22% in MSRC) and

55% of the pixels in the PASCAL images are unlabeled

(as compared to 28% in MSRC). Moreover, the PASCAL

dataset pre-dominantly consists of people, leading to an

entropy of 2.9 of the distribution of object occurrences

(as compared to 4.0 in MSRC). It is interesting to view

the relative-location contextual statistics for the MSRC and

PASCAL datasets (Fig. 9). Bright entries correspond to

higher occurrence-statistics. The relative-location statistics
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Fig. 9. MSRC (left) and PASCAL (right) relative-
location statistics.

Fig. 10. Machine recognition accuracies on the MSRC
and Corel datasets using different sources of context.

are displayed via a 5 × 5 matrix for each category pair,

indicating how often the second category (indicated by the

column) is at that particular relative location with respect

to the first category (indicated by the row). Overall, we

see that the MSRC dataset has more interesting contextual

interactions, where as the PASCAL dataset is dominated

by the Person category, which co-occur with most other

categories in the dataset. We note that these statistics are an

artifact of the labeling of the PASCAL images, and not the

images themselves (which are more realistic than MSRC).

Hence, PASCAL still provides a useful scenario to conduct

human studies, which to some extent are not bound by the

labels in the images.

5.1 Machine Results

Next, we present analysis on machine experiments using

different forms of context (co-occurrence, relative location

and relative scale). Average class-wise accuracies using

both low and high resolution images from the MSRC and

Corel datasets for each of the different forms of context

are summarized in Fig. 10. The Corel dataset has fewer

classes and the only prominent interactions are the co-

occurrence of Polar Bear with Snow, and Rhino/Hippo

with Water. Hence, while co-occurrence gives a significant

boost in performance on the Corel dataset, relative location

and relative scale do not. For MSRC, which is a richer

dataset, all forms of context give a significant boost on low

resolution images.
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Fig. 11. Average machine accuracies for the 21 categories in the MSRC dataset using appearance alone, using
blind recognition with context alone, and using subsequently more complex context models with appearance.

Fig. 12. Images in the MSRC dataset containing
books. They occur at similar locations across images,
and rarely interact with other categories. Contextual
information does not boost the performance of such
categories.

Fig. 11 shows the per class accuracies on low resolution

images of the MSRC dataset using only appearance, and

subsequently adding the three forms of context. We can

see that different object categories benefit from different

forms of context. Some categories such as Book and

Chairs do not receive any benefit from context due to

peculiarities of the dataset, such as they rarely co-occur

with other objects (Fig. 12). Categories such as Body

and Boat gain significantly from context. Their appearance

cues are very weak (0% in the case of Body), but they

are very strongly associated with other categories (Face

and Water respectively) whose appearance cues are quite

reliable. In fact, for some categories such as Body and

Building, blind recognition performs much better than ap-

pearance information alone as well as combined appearance

and context. In several categories, relative scale does not

provide a boost in performance. This may be due to lack of

scale related dependencies due to inherent semantics of the

categories, or due to depth variations of the objects across

images, to which our scale measure is not invariant. The

independence of scale is automatically learnt by our model.

In some categories, albeit rarely, certain forms of context

hurt performance. This may be attributed to a category’s

strong dependence on categories with poor appearance

cues. For instance, Sign commonly co-occurs with Building

whose appearance term has 0% accuracy.

In Fig. 13 several examples are shown where different

types of context helped recognition. Let us consider the last

example, where the test image contains Tree, Car, Road

and Sky. The appearance alone labels the objects as Tree,

Cat, Road and Sky, but the very low likelihood of finding

a Cat on the Road along with Tree and Sky made the

co-occurrence information flip the label of the Cat to a

car road

tree sky
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tree

grass
body

face
sky

sign building

water
boat

sky

face tree

dog
road

sheep building

car
road
building
sky

sheep

face

body tree

sky
areoplane
grass

water

building
bicycle

road

book

car

body

boat

dog

building

body

sky

building

Image     Groundtruth A              A+CO       A+CO+L    A+CO+L+S

building

body

sky

building

building

body

sky

building

body

boat

dog

Fig. 13. Illustrations of the effects of different forms
of context on recognition. A → appearance, CO → co-
occurrence, L → relative location, S → relative scale.

Building. The location of the Building seems consistent

with respect to the Tree, Road and Sky - so the relative

location information left the labels untouched. However, the

relative scale information discarded the possibility of the

Building being so small with respect to the Sky, Tree and

Road, and flipped the label of the Building to Car - which

matches the ground truth labeling. Examples of incorrect

labels provided by the context model are shown in Fig. 14.
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water
grass
tree
sky

face
road

body

Fig. 14. Illustrations of incorrect labelings provided by
the context model.

Fig. 15. Low resolution and high resolution appear-
ance information alone (Left: MSRC, Right: PASCAL).

5.2 Human Studies Set-up

Next, we study the various sources of context leveraged by

humans for recognition. To this end, we perform a series

of human studies on Amazon Mechanical Turk using low-

resolution images, for which contextual information plays a

key role in recognition. In each experiment, the object to be

recognized is identified by drawing a red border around it.

An image without the red border is also shown in case the

red border proves distracting. Unlike the set-up described in

section 4.2, we do not display the objects at four different

scales. We use a fixed scale that the authors found most

comfortable for recognition. We conduct these studies on

two datasets: the MSRC dataset containing 625 segments

extracted from 265 images and the PASCAL 2007 dataset

consisting of 897 objects from 394 images. In order to

study the role of different sources of contextual information,

we designed the following visualizations using ground

truth segmentations (for MSRC) and bounding boxes (for

PASCAL).

Appearance: As a baseline, we present only appearance

information to the subject, i.e., the object is shown in

isolation without additional image information. An example

is shown in Fig. 15.

Co-occurrence: We visualize co-occurrence by displaying

all labeled objects in the scene side-by-side as shown in

Fig. 16. Information about the location and scale of these

objects is not available (the objects are scaled to the same

size). The object to be recognized is shown with and

without a red border, and the remaining objects are shown

with and without grey borders.

Relative-location: For relative-location, we display the

labeled objects in the same relative locations as they appear

in the image, as seen in Fig. 17. All objects are scaled to

the same size to remove relative scale information. To avoid

overlap of the rescaled objects, the distances between the

centers of objects are increased but the relative distances

and orientations are kept consistent with the original image.

Relative-scale: The relative-scale visualization is similar to

the co-occurrence visualization, but the objects are shown

at their true relative scales, i.e. they are not rescaled to the

same size. An example can be seen in Fig. 18.

All sources of context combined: We used two vi-

Fig. 16. Co-occurrence information (top: MSRC, bot-
tom: PASCAL).

Fig. 17. Relative-location information (lef: MSRC, right:
PASCAL).

sualizations to display relative-location and relative-scale

information simultaneously. The first displays all the pixels

from labeled objects in the intact image, and the ‘void’

pixels from unlabeled objects are shown as white. Ex-

amples can be seen in Fig. 19 (left), which we call all-

no-void. The second visualization (called all-exploded) is

shown in Fig. 20 in which additional white space is added

between the objects. The relative-location and relative-scale

information is available (i.e. all-exploded has the same

information as all-no-void), but is similar to the relative-

location visualization. This allows us to determine if our

choice of visualization affected subjects’ accuracies. We

note that for PASCAL images, a large portion of the images

are often void.

Blind recognition: For sake of completeness and consis-

tency with previous human studies, we also conduct the

blind recognition test, where the entire image (including

the regions of an image that may be void) is shown,

and the pixels belonging to the object of interest are not

displayed. Examples can be seen in Fig. 19 (middle).

Unlike the MSRC dataset, in the PASCAL dataset the shape

information of the object to be recognized is not available

and contextual information within the bounding box is lost.

Entire image: We also determine human subjects’ accuracy

at recognizing objects when the entire image is available.

Examples can be seen in Fig. 19 (right). As compared

to ‘all-exploded’ and ‘all-no-void’, the entire image has

two extra sources of information. The first are the void

regions of the image that could contain useful contextual

information. Second, access to the entire natural image may

enable extraction of other sources of information besides

relative location and scale, such as 3D geometric contextual

cues.

High resolution appearance: Finally, we test human sub-

jects’ on recognizing the same objects in high resolution

images, without any contextual information, as seen in
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Fig. 18. Relative-scale information (top: MSRC, bot-
tom: PASCAL).

Fig. 19. Left to right: All contextual information via the
all-no-void visualization, blind recognition and entire
image (top: MSRC, bottom: PASCAL).

Fig. 15.

5.3 Human Studies Results

In this section we present results of the human studies using

different sources of context as described above. We ob-

tained responses from 10 subjects on Amazon Mechanical

Turk for each test instance. Since the reliability of subjects

on Mechanical Turk is variable, we only retain the three re-

sponses for each question from the most accurate subjects.

We found this calibration step to provide accuracies similar

to the authors’ accuracies on the same tasks. This may result

in accuracies that are artificially high by a small amount.

For instance, if the subjects chose their responses randomly

and we picked the three highest scores, an accuracy of

about 8% would be found. This is slightly higher than the

accuracy of random responses without a filtering step (≈
5%). However, the relative accuracies of our various tests

should be consistent.

We now look at the influence of the different sources of

context on the human recognition accuracies, as shown in

Fig. 21. For the MSRC dataset, we find that co-occurrence

and relative-location information provide a boost in per-

formance. However, we see that incorporating the relative-

scale information does not provide an improvement in per-

formance over co-occurrence information, or over relative-

location information. The choice of visualization, all-

exploded or all-no-void, for displaying relative-location and

relative-scale information does not affect the subjects’ ac-

curacies. We also see that the image regions that are marked

as void in the ground truth segmentations do provide useful

Fig. 20. All contextual information via the ‘all-exploded’
visualization (left: MSRC, right: PASCAL).

Fig. 21. Recognition accuracies of subjects on the
MSRC and PASCAL datasets for different sources of
context.

contextual information, which would explain the increase

in accuracy from ‘all-no-void’ to ‘all’ (entire image)3.

The PASCAL accuracies are lower overall when com-

pared to the MSRC dataset, especially for appearance

information alone and contextual information alone (blind).

As with MSRC, we see that relative-scale statistics do not

boost recognition performance. Moreover, even relative-

location cues seem to be quite weak. This is consistent

with our observation that the relative-location statistics of

PASCAL have less variation than MSRC, Fig. 9. Interest-

ingly, even though a larger portion of the PASCAL images

were marked void, the gap between the accuracies using the

entire image, and those using the all-no-void visualization

is smaller in PASCAL than in MSRC. This may be be-

cause PASCAL has bounding boxes, where the surrounding

objects leak into the appearance of the objects, making

contextual information less critical overall4. To verify this,

we conducted an experiment on about 400 low-resolution

PASCAL images containing about 800 objects using ap-

pearance information alone, comparing performances using

segmentations and bounding boxes. We find that using

bounding boxes, human accuracy was 51%, while using

segmentations, the accuracy was 39%. This indicates that

the bounding boxes themselves do in fact incorporate useful

contextual information, which is more valuable than the

explicit shape information revealed via the segmentations.

The role of the different sources of context for each of

the object categories in the MSRC and PASCAL dataset

can be seen in Fig. 22. For the MSRC dataset, we see

3. Inspired by this finding, we recently proposed a novel contextual cue
that exploits these void regions and boosts performance of a state-of-the-
art object detector [58].

4. Previous works have also shown a minimal boost in performance
using the PASCAL dataset [55].
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Fig. 22. Recognition accuracies of human subjects on the MSRC (left) and PASCAL (right) datasets for different
sources of context on each of the object categories.

some similar trends to the machine results on the roles

of context (Fig. 11), where categories such as Body and

Boat greatly benefit from contextual information. Unlike

machines, humans were able to additionally take advantage

of contextual information for categories such as Face and

Water, which have complementary categories Body and

Boat that are difficult to recognize from appearance infor-

mation. For sake of completeness we also perform human

studies using high resolution appearance information alone,

and subjects’ accuracies were 97% on both the MSRC and

PASCAL datasets. Apart from negligence, some systematic

errors made by human subjects in the PASCAL images

include scenarios where the object is effectively low res

(often seen with Bottle on a dining table which are hard to

recognize in isolation), or the bounding box contains two

object categories (such as Person on a Bicycle) making it

unclear (in spite of instructions) which object should be

labeled. In MSRC, apart from low effective resolution of

objects, aspects such as nearly white sky, or uncommon

view-points of objects (example in Fig. 15 a puppy-dog

and sheep can be confused) lead to errors.

6 DISCUSSION

In this section we draw attention to some interesting points

of discussion.

Impoverished Appearance Information: As stated in the

introduction, low-resolution images are only one scenario

where appearance information is impoverished. Other sce-

narios could include small objects in scenes, occluded

objects, etc. Interestingly, the objects marked as ‘difficult’

in the PASCAL annotations are meant to represent precisely

these scenarios. As per the annotation protocol, “an object

marked as ‘difficult’ is considered difficult to recognize, for

example an object which is clearly visible but unidentifiable

without substantial use of context”. These objects are gener-

ally ignored in the challenge, but we believe they provide

a lucrative venue for exploring contextual information in

real-world, natural-occurring images. We perform human

studies on 548 PASCAL images containing a total of

1, 192 such ‘difficult’ object instances, using appearance

information alone (Fig. 23 top-left), contextual information

alone (blind recognition, Fig. 23 top-middle) and the entire

90
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80
85
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75

app blind entire

Fig. 23. Human studies on the ‘difficult’ PASCAL
object instances using appearance information alone
(left), contextual information alone (blind recognition,
middle) and the entire image (right). Similar to object
recognition in low-resolution images, appearance infor-
mation alone is insufficient, and contextual information
is necessary for reliable recognition.

image (Fig. 23 top-right). The accuracies obtained are also

shown in Fig. 23 (bottom). Similar to recognition in low

resolution images, contextual information is necessary in

this scenario.

Accuracies on a Dataset by Chance
To analyze the amount of contextual information present

in a dataset, an interesting metric is to look at what

recognition accuracy can be achieved by chance as the

different forms of context are incorporated. For instance,

if we had no information, in a 21 class problem, chance

would be 1/21 i.e. about 5%. However, if we analyze the

location statistics of the different categories, and classify a

given segment by assigning it to the most likely category

given its location, our chance accuracy is increased. We still

refer to this as chance because no appearance information

or other intelligent machinery has been used, we are simply

making our best guess blindly. Similarly other statistics

such as scale, and location and scale combined can be

extracted from training data to evaluate what recognition

rates can be achieved. This provides some insight into the
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significance of the performance boosts achieved by state-

of-the-art algorithms.

For the MSRC dataset, we find that we would get

5% recognition rates by chance when classifying each

segment/object in the MSRC dataset using uniform prior,

14% using the occurrence-based prior, 30% using the

location-based prior and 18% using the scale-based prior.

Location and scale based priors combined achieve about

32% accuracy, much higher than the 5% we may be inclined

to consider for a 21 class problem. We note that this is the

recognition accuracy without looking at a single pixel in the

object. Similar analysis of the PASCAL dataset resulted in

accuracies of 5% with uniform prior, 48% using occurrence,

location and scale information individually and 49% using

location and scale both. The high accuracy using occurrence

prior alone is, as demonstrated earlier, due to the dominance

of the Person category in the statistics of the PASCAL

dataset. These results indicate that this holds true across

scales and spatial locations, making the PASCAL dataset

less interesting for contextual modeling.

Improving Features or Context Models? We explore the

question “Do we need to improve our data terms further or

our context models to achieve close to human accuracies?”

Looking at the MSRC high resolution results in Fig. 4 we

find that machines are lagging significantly behind on using

appearance information alone. For low resolution images,

in which the appearance only tests between humans and

machines are similar, the use of context helps humans

significantly more. Thus, it appears that improvements in

both appearance and contextual models need to be made

to match the performance of humans. Since results using

only appearance information are similar for humans and

machines on low resolution images, this task provides a

good scenario for evaluating context models.

Context as Representing the Structure in the World:
As we see in our results, the gain from context is certainly

a characteristic of the dataset. The more complex a scene,

the greater the likelihood of it benefitting from context. As

the complexity and number of objects increases, obtaining

training datasets with sufficient information will be more

difficult. Means of learning context from outside sources

such as Google Sets as proposed by Rabinovich et al. [5]

or large collections of image data such as LabelMe [56]

may need to be explored. Leveraging extensive and diverse

sources of data is necessary to learn the generic structure of

our world, as opposed to potential peculiarities of a dataset.

7 CONCLUSION

In conclusion this paper makes three main contributions.

First, we propose a model for context that includes relative

location and scale information, as well as co-occurrence

information, which produces state-of-the-art performance

on both the MSRC and Corel datasets even with low

resolution images. Second, we explore the tradeoffs of

appearance and contextual information using both low and

high resolution images in human and machine studies.

Low resolution images provide an appropriate venue for

exploring the role of context, since recognition based

on appearance information alone is limited. Finally, we

explore the impact of the different sources of context on

machine and human object recognition performance in

low resolution images, from the MSRC (segment-based)

and PASCAL (bounding-box-based) datasets. For human

subjects, we find that relative-scale does not prove to be a

strong source of contextual information on these datasets,

while co-occurrence and relative location are useful.
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