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Abstract

In this paper, we describe an interest point detector us-
ing edge foci. Unlike traditional detectors that compute
interest points directly from image intensities, we use nor-
malized intensity edges and their orientations. We hypothe-
size that detectors based on the presence of oriented edges
are more robust to non-linear lighting variations and back-
ground clutter than intensity based techniques. Specifically,
we detect edge foci, which are points in the image that are
roughly equidistant from edges with orientations perpendic-
ular to the point. The scale of the interest point is defined
by the distance between the edge foci and the edges. We
quantify the performance of our detector using the inter-
est point’s repeatability, uniformity of spatial distribution,
and the uniqueness of the resulting descriptors. Results are
found using traditional datasets and new datasets with chal-
lenging non-linear lighting variations and occlusions.

1. Introduction
Identifying local features is a critical component to many

approaches in object recognition, object detection, image
matching and 3D reconstruction. In each of these scenar-
ios, a common approach is to use interest point detectors
to estimate a reduced set of local image regions that are
invariant to occlusion, orientation, illumination and view-
point changes. The interest point operator defines these re-
gions by their spatial locations, orientations, scales and pos-
sibly affine transformations. Descriptors are then computed
from these image regions to find reliable image-to-image
[19, 23] or image-to-model matches [5, 22]. It is desirable
that a good interest point detector has the following three
properties: (1) The interest points are repeatable, (2) the de-
scriptors produced from them are unique and (3) they are
well-distributed spatially and across scales.

An interest point is defined based on some function of
the image, typically a series of filtering operations followed
by extrema detection. Some of the techniques that work
based on this principle are the Harris corner detector [7], the
Difference of Gaussian DoG detector [11], the Laplacian

Figure 1. Illustration (a) of the position of edge foci (red dots) rel-
ative to edges (blue line). Grey ellipses show the area of positive
response for the orientation dependent filters. Peak aggregated fil-
ter responses for a small scale (b) and large scale (c).

detector [10], and their variants including Harris-Laplace
[14, 16] and Hessian-Laplace detectors [17]. Detectors that
find affine co-variant features [17] have also been proposed
such as Harris-affine [1, 15], Hessian-affine [17], Maxi-
mally Stable Extremal Regions MSER [13] and salient re-
gions [8]. Most of these approaches perform a series of
linear filtering operations on the image’s intensities to de-
tect interest point positions. However, filtering intensities
directly can result in reduced repeatability under non-linear
lighting variations that commonly occur in real world sce-
narios. Furthermore, when detecting objects in a scene,
changes in the background will also result in non-linear
intensity variations along object boundaries, resulting in a
similar reduction in repeatability.

In this paper, we propose detecting interest points us-
ing edge foci. We define the set of edge focus points or
edge foci, as the set of points that lie roughly equidistant to
a set of edges with orientations perpendicular to the point,
shown as red dots in Figure 1(a). The detection of edge
foci is computed from normalized edge magnitudes, and is
not directly dependent on the image’s intensities or abso-
lute gradient magnitudes. Compared to image intensities,
we hypothesize that the presence of edges and their orien-
tations is more robust to non-linear lighting variations and
background clutter [18, 4, 25]. Edge foci are detected by ap-
plying different filters perpendicular and parallel to an edge.



The filter parallel to the edge determines the edge’s scale
using a Laplacian of a Gaussian. The second filter blurs
the response perpendicular to the edge centered on the pre-
dicted positions of the foci, shown as grey ellipses in Figure
1(a). Aggregating the responses from multiple edges results
in peaks at edge foci. Figures 1(b,c) show examples of two
detected foci at different scales.

As described in Section 3, our detector has three stages.
First, we compute locally normalized edge magnitudes and
orientations. Second, we perform orientation dependent fil-
tering on the resulting edges, and aggregate their results.
Finally, we find local maxima in the resulting aggregated
filter responses in both spatial position and scale. In Section
4, experimental results show the increased repeatability of
our detector and its competitive performance on real world
tasks. Given the non-linear operations performed by the de-
tector, our approach does require increased computational
resources over more traditional approaches [7, 11]

2. Previous work
Interest point detectors can be categorized based on the

transformations for which they are co-variant. The earli-
est interest points were corner detectors [7] that detected
the positions of corner-like features in the image. Scale co-
variant features were later introduced by Lindeberg [10] and
popularized by Lowe [11] using Laplacian or Difference of
Gaussian filters. Recently, several interest points detectors
have been proposed that are co-variant with affine transfor-
mations. Matas et al. [13] detects stable regions of intensity,
while Kadir et al. [8] detects salient regions. Combinations
of either Harris or Hessian corner detectors, followed by
Laplacian scale selection and affine fitting were proposed
by Mikolajczyk et al.[15] and Baumberg et al. [1]. A com-
parison of the affine co-variant interest point detectors can
be found in [17]. Computationally efficient detectors have
also been proposed, including SURF [2], FAST [21] and
CenSurE [12].

The use of edges for interest point detection has received
less attention. Mikolajczyk et al. [18] proposed an inter-
est point detector that finds points equidistant from edges.
Unlike our approach, they do not consider edge orientation
in their filter response, resulting in numerous peaks that are
not well localized. Mikolajczyk et al. [17] also proposed
an affine co-variant edge-based region detector using Har-
ris corners [7] to locate positions. Canny edges [4] deter-
mined the remaining affine parameters. However, it under-
performed the authors’ other detectors.

3. Approach
In this section, we describe our approach to interest point

detection. We begin by describing the computation of nor-
malized edges and orientations (Figure 2(b)), followed by
orientation dependent filtering (Figure 2(c,d)). Finally, we
discuss approaches to computing the filter responses across

Figure 2. Flow diagram of the detector: (a) input image, (b) nor-
malized gradient f̂ , (c) normalized gradients separated into orien-
tations f̂i, (d) responses after applying oriented filter hi = f̂i⊗gi,
(e) the aggregated results h, and (f) detected interest point.

scales, and the detection of maxima in scale space.
Initially, we restrict our discussion to finding interest

points at a particular scale σ in image I . The scale σ de-
fines the size of the local structures to be detected, i.e. the
distance between the edges and their foci, Figure 1.

3.1. Computing normalizing edges

The first stage of our approach computes normalized
edge magnitudes and their corresponding orientations for
an image I . Similar to other Gaussian pyramid based
techniques [11, 9], we first blur the image using a Gaus-
sian kernel. Assuming we are finding interest points at a
particular scale σ, we blur using a standard deviation of
ασ to ensure the detector is scale covariant, where α =
0.25 for all experiments. It is important that α is large
enough to remove quantization noise when computing ori-
entations at smaller scales, while not being too large that
it blurs image structures. The intensity of a pixel p in the
blurred image Iσ at location (xp, yp) is denoted Iσ(p) or
Iσ(xp, yp). The horizontal gradient Iσx (p) of the pixel is
equal to Iσ(xp + 1, yp) − Iσ(xp − 1, yp) and similarly
for the vertical gradient Iσy (p). The magnitude of the gra-
dient for pixel p is the Euclidean norm of its gradients,
f(p) = ‖[Iσx (p) Iσy (p)]T‖2. The orientation is defined as
θ(p) = arctan(Iσy (p)/Iσx (p)). We assume the orientations
are not polarized, i.e. θ(p) ∈ [0, π].

If the original image already exhibits some spatial blur-
ring with a standard deviation of σ0, the amount of blur
should be reduced to

√
(ασ)2 − σ2

0 to ensure a resulting
blur with a standard deviation of ασ. In our experiments
we assume an initial blur of σ0 = 0.5, since most real im-
ages exhibit some fractional pixel blur.

To normalize the edge magnitudes, we use the same ap-
proach as proposed in [25]. First, we compute the average
gradient in a local spatial neighborhood of each pixel. The
average Gaussian weighted gradient f̄(p) in a neighborhood



N of p is:

f̄(p) =
∑
q∈N

f(q)G
(
q − p;ασ

√
(λ2 − 1)

)
, (1)

where G(x; s) is a normalized Gaussian evaluated at x with
zero mean and a standard deviation of s. We set λ = 1.5 for
all our experiments. Next, we divide f by the mean gradient
f̄ to compute our normalized gradient f̂ :

f̂(p) =
f(p)

max(f̄(p), ε/σ)
, (2)

where ε = 10 is used to ensure the magnitude of f̄(p) is
above the level of noise. An example of the normalized
gradients is shown in Figure 2(b).

3.2. Orientation dependent filtering
Our next stage computes a series of linear filters on the

normalized gradients f̂ based on their orientations θp, Fig-
ure 2(c,d). We apply different filters perpendicular and par-
allel to the edges. As shown in Figure 3(e), a Laplacian
is applied parallel to an edge to determine the edge’s scale
or length. Gaussian filters modeling the predicted positions
of edge foci are applied on either side perpendicular to the
edge. The responses of all edges are summed together to get
the final filter response, Figure 2(e). As a result, edges that
are equidistant and perpendicular to edge foci will reinforce
each others’ responses.

The filter applied parallel to an edge attempts to deter-
mine the scale of the edge, i.e. the linear length of the
edge segment. A filter known for superior detection of scale
[15, 9] is the Laplacian of Gaussian filter. As stated in [9],
this filter will produce a maximal response at the correct
scale without producing extraneous or false peaks. Our 1D
filter is defined as:

u(x, σ) = −σ2
u∇2G(x;σu), (3)

where σu =
√

(βσ)2 − (ασ)2 to account for the blurring
already applied to the image. Scaling by a factor of σ2

u is
required for true scale co-variance as shown by [9]. Varying
the value of β will affect the size of the area around the edge
foci that is reinforced by the individual edge responses, as
shown in Figure 3(a,b,c). A value too large, Figure 3(a)
will blur structural detail, while a value too small may suf-
fer from aliasing artifacts and create multiple peaks if the
edges are not exactly aligned perpendicular to the foci, Fig-
ure 3(c). We choose an intermediate value of β = 0.5 that is
robust to noise, but does not overly blur detail, Figure 3(b).

The filter applied perpendicular to the edge allows edges
of similar lengths to reinforce each others’ responses at po-
tential edge foci, as shown in Figure 1. We assume edge
foci exist at a distance of σ perpendicular to the edge. As a
result, our filter is the summation of two Gaussians centered
at −σ and σ:

v(x, σ) = G(x− σ;σv) + G(x+ σ;σv). (4)

(a) (b) (c)

(d) (e)

Figure 3. (a,b,c) illustration of different values of β for edges form-
ing a circle. Grey ellipses represent the area of positive response
for filter (e) applied perpendicular to the edges. (d) illustration of
the computation of ϑ on a set of edges forming a circle, and over-
lapping Gaussian with Laplacian having twice the standard devi-
ation. (e) the filter response g that is applied to normalized edge
images.

The value of σv may be assigned based on the pre-
dicted variance of the edge foci. However, setting σv =√

(βσ)2 − (ασ)2 the same value as σu provides compu-
tational advantages. As we discuss in Section 3.2.1, the
2D filter resulting from convolving equations (3) and (4),
shown in Figure 3(e), can be computed using steerable fil-
ters that are linearly separable.

For computational efficiency, we only evaluate the filters
(3) and (4) at a discrete number of orientations θi, where i ∈
Nθ, (Nθ = 8). For each orientation θi, we create an edge
orientation image f̂i that only contains normalized edges
with orientations similar to θi. We softly assign edges to an
edge orientation image f̂i using:

f̂i(p) = f̂(p)G(θ(p)− θi;ϑ), (5)

where ϑ = sin−1(β)/2, and θi = iπ/Nθ. As illustrated in
Figure 3(d), our Laplacian filter has a zero crossing at βσ,
and we assume the edge focus point is a distance σ from the
edge. For an object with locally constant non-zero curva-
ture we can assign a value of sin−1(β)/2 to ϑ to match the
widths of the Gaussian in equation (5) to the center of the
Laplacian in (3), i.e. the standard deviation of the Gaussian
is half the Laplacian, inset Figure 3(d).

As shown in Figure 2 and 3(e), if gi is our 2D filter found
by convolving our vertical filter (3) with our horizontal filter
(4) and rotated by θi, we can compute our final response
function h using:

h =
1

Nθ

∑
i

hi (6)

where hi = f̂i ⊗ gi.



3.2.1 Steerable filters

In this section, we describe how in practice we compute
hi = f̂i ⊗ gi for all i. Naively convolving f̂i with the 2D
filter gi is computationally expensive. Since filter (4) is the
summation of two identical Gaussians, we can apply a sin-
gle Gaussian blur and sum the result at two different offsets:

hi(p) = h̃i(p− p′) + h̃i(p+ p′) (7)

where p′ = {σ cos(θi), σ sin(θi)} and h̃i = f̂i ⊗ Gi2. Gi2
is the second derivative edge filter with orientation θi re-
sulting from the convolution of a Gaussian and its second
derivative. If σu = σv , Gi2 combined with (7) results in the
same response as applying the filters (3) and (4). It is known
[6] that Gi2 can be computed as a set of three 2D filters that
are linearly separable:

G2a(x, y) = σ2
uG(y;σu)∇2G(x;σu) (8)

G2b(x, y) = σ2
u∇G(x;σu)∇G(y;σu) (9)

G2c(x, y) = σ2
uG(x;σu)∇2G(y;σu). (10)

Using equations (8), (9) and (10), we can compute Gi2 =
ka(θi)G2a + kb(θi)G2b + kc(θi)G2c with:

ka(θi) = − cos2(−θi + π/2)
kb(θi) = 2 sin(θi) cos(−θi + π/2)
kc(θi) = − sin2(−θi + π/2)

. (11)

In practice, Gi2 may also be computed by first rotating
the image by−θi, applyingG0

2 and rotating back. However,
artifacts due to resampling may reduce the quality of the
response. Computational requirements are similar for both
techniques.

3.3. Scale space
In the previous section, we described how to compute

a single filter response function hk at the scale σk, where
k ∈ K is the set of computed scales. There are sev-
eral methods for computing interest points across multiple
scales depending on how image resampling is performed.
For instance, a naive approach is to apply increasing values
of σ to the original image to compute each scale. However
at large values of σ, computing the filter responses can be
expensive.

We use a popular approach that creates an octave image
pyramid, in which the image size is constant in an octave
of scale space and resized by half between octaves [11, 10].
An octave refers to a doubling in size of σ. This approach
reduces artifacts resulting from resampling, while being
computationally efficient due to the reduced image size at
larger scales. Since we perform non-linear operations on
our image, such as computing orientations and normalizing
gradients, we are required to recompute f̂ and θ to produce
hk at each scale k. Unlike our approach, methods based on

linear filters such as the DoG interest point detector [11],
may progressively blur filter responses for additional effi-
ciency. Following [11] we compute three levels per octave,
i.e. σk+1/σk = 21/3. Two additional padding scales are
computed per level to aid in peak detection.

3.4. Maxima detection
Given a set of response functions hk over scales k ∈ K

we want to find a set of unique and stable interest point de-
tections. To accomplish this, we use the standard approach
proposed in [11] for finding maxima in the responses spa-
tially and across scales. A pixel p is said to be a peak if its
response is higher than its neighbors in a 3 × 3 × 3 neigh-
borhood, i.e. its 9 neighbors in hk−1 and hk+1, and its 8
neighbors in hk. In addition to being a maxima, the re-
sponse must also be higher than a threshold τ = 0.2.

As first proposed by Brown and Lowe [3], we refine our
interest point locations by fitting a 3D quadratic function to
the local response hk in the same 3 × 3 × 3 neighborhood.
The computed offset x̂ from the original position x is found
using:

x̂ = −∂
2h−1

∂x2
∂h

∂x
. (12)

4. Experimental Results
In this section, we show experimental results to illustrate

the performance of edge foci interest points based on three
different metrics: First, we provide an entropy measure to
study the distribution both spatially and across scales of
the interest points. Second, we score the interest points’
repeatability, i.e. whether corresponding regions are cho-
sen between images. Finally, we measure the uniqueness
of the descriptors computed by the interest points to esti-
mate the amount of ambiguity present during matching. We
also evaluate the detectors on image alignment and retrieval
tasks.

We compare the performance of our detector against
some of the most commonly used detectors such as the Har-
ris [7], Hessian [17], Harris/Hessian Laplace [17], MSER
[13] and DoG [11] detectors1 on a set of new datasets that
capture non-linear illumination variations and changes in
background clutter. Homographies are computed using ten
or more hand labeled points to provide correspondences be-
tween pairs of images. We assume the scenes are either
planar or taken at a far distance so correspondences can be
well approximated by a homography. Figure 4 shows two
example images from the 8 datasets used in this paper. The
datasets Boat, Graffiti and Light were provided by and de-
scribed in [17]. When required, the rotation of the interest
points are computed using the method of [11].

Before we present quantitative experimental results, we
show the response of our detector in comparison with the

1For the all the detectors except DoG we use the binaries
from http://www.featurespace.org/, for DoG the binaries provided at
http://www.cs.ubc.ca/˜lowe/keypoints/ generate better results.



Figure 4. Example images from the 8 datasets used in the paper.

(a) (b) (c)

Figure 5. Filter response on four images (a) for the edge foci de-
tector (b) and Laplacian detector (c).

Figure 6. Detection results for different style fonts. Notice only
Edge Foci produces repeatable interest points. Hessian detectors
produce similar results to Harris.

Laplace detector[10] on a set of toy examples to provide
additional insight. Figure 5 shows the filter responses of
our detector and the Laplacian detector on a set of four ex-
amples for a fixed scale. Notice how the filter responses are
more consistent for our edge based descriptor as compared
to the intensity based Laplacian detector. The edge foci de-
tector finds interest points at the correct scale and position
on all four circles, where the Laplacian fails on the right
two.

Since our detector is only dependent on normalized edge
magnitudes, it is possible to find repeatable interest points
on line drawings of images. This may be useful for detect-
ing signs with different font styles as shown in Figure 6.
Notice none of the other detectors produce repeatable inter-
est points when the font changes style.

Entropy For many applications such as image matching
and 3D reconstruction it is essential that local features de-
tected in the image are well-distributed spatially and across
scales. This is important for detecting objects occupying a
small area of the image, and to remove the redundancy of
overlapping interest points at neighboring scales.

In this section, we measure the distribution of the interest
points in scale space based on their entropy. Intuitively, the
positions of well distributed detectors should have a higher
entropy than detectors with overlapping interest points. We
compute entropy by discretizing positions and scales. For
scales, we use the same discretization as was used to com-
pute the detections. Spatially we discretize the image into
bins of size ξσk where ξ is a scalar controlling the density
of the bins. Since the spatial size of the bin is dependent
on scale, there will be fewer bins at larger scales. That is,
the size of the bins will have a ratio of 21/3 between levels.
We compute the contribution to each bin b(x, y, k) using a
Gaussian weighting on the positions of the detected interest
points m ∈M:

b(p, k) =
1

Z

∑
m∈M

G(‖p−mp‖/mσ;σx)G(k −mk;σl)

(13)
wheremp is the position,mσ is the scale andmk is the scale
level (log(mσ)/ log (21/3)) of the interest point m, and Z
is the normalization constant used to ensure all bins sum to
1. In our experiments we set σx = 8, σl = 1 and ξ = σ/4.
These parameters result in overlapping contributions for de-
tectors that extract overlapping image regions, assuming the
descriptor has a size of 4mσ . A detector’s entropy measure
is then computed as:∑

p

∑
k

−b(p, k) log b(p, k) (14)

Figure 7 summarizes the entropies for several detectors.
We see that the edge foci interest points have higher entropy
indicating that they have a better distribution across spatial
locations and scales. Figure 8 shows an example of detected
interest points and a visualization of the spatial distribution
of b(p, k) for the edge foci, DoG, Hessian Laplace and Har-
ris detectors. We can clearly see that the edge foci interest
points have a greater “spread” than the other interest point
detectors that tend to cluster detections.

Repeatability The repeatability criterion measures the
percentage of interest points that are detected at the same
relative positions and scales across images. Considered in
isolation, the repeatability score can be biased towards de-
tectors that find overlapping interest points. That is, poor
localization can be mitigated by the detection of redundant
interest points. In practice this is undesirable for two rea-
sons: First, redundant interest points require more storage,
and increased computation for matching. Second, the de-
scriptors corresponding to the interest points will not be



Figure 7. Entropy of interest point detectors across various
datasets.

Figure 8. Visualization of the interest points and their spatial dis-
tributions for various detectors on Yosemite image.

unique, increasing the difficultly of matching and nearest
neighbor techniques.

Two interest points, m and m′, that are detected in dif-
ferent images are said to pass the traditional repeatability
criterion [11, 16] if their relative positions and scales are
within some scale normalized distance:

(‖mp −m′p‖ − ε)/mσ < τp (15)

‖mk −m′k‖ < τk. (16)

where τp = 0.4, τk = log(1.3) and ε = 2 to account
for small errors in the homography estimation. We normal-
ize the distances by scale since the variance in the interest
points’ descriptors are related to scale normalized distances
and not fixed distances. To ensure the consistent measure-
ment of scale, the scales of all detectors were calibrated on
a test image with various sizes of circles. If the projected
interest points lie outside the other image, they are not used
to compute the repeatability score.

We modify the traditional measure of repeatability to ad-
ditionally penalize overlapping detections. Using the set of
interest pointsM∗ that passed the traditional repeatability
criterion, we compute a distribution B(p, k) using equa-
tion (13) similar to b(p, k) used for our entropy measure.
To only penalize detections resulting in descriptors that are
more than half overlapping, we reduce the value of σx to 4.
We assume a standard descriptor region size of 4 times the
interest point scale. Our final measure of repeatability that
encourages well distributed detections is:

1

#M∗
∑
p

∑
k

min (t, B(p, k)) (17)

where #M∗ is the size ofM∗ and t is the product of the
Gaussian normalization constants in Equation (13), t =
1/(2πσxσk). Using Equation (17), if none of the interest
points inM∗ overlap, the repeatability score is the same as
using a traditional repeatability criterion [11, 16]. However,
if two interest points in M∗ do overlap, their contribution
is truncated by Equation (17) reducing the overall score.

For our experiments, we compare the repeatability of
our Edge Foci interest points with the interest points gen-
erated from the Harris[7], Hessian[17], Harris/Hessian-
Laplace[16, 17], MSER [13] and DoG detector [11] on the
different datasets described in section 4. We tune each de-
tector to generate approximately the same number of inter-
est points per test image ranging from 700 to 2, 500 points.
Figure 9 shows the repeatability measures for each dataset.
Across the various datasets the edge foci detectors per-
form well, especially in those containing significant light-
ing variation (Inspiration point, Notre Dame, Mt. Rush-
more, Painted Lady) and occlusion (Obama). MSER per-
forms best on severe affine transformations (Graffiti). Hes-
sian Laplace and Harris Laplace are generally within the
top three performers, while Harris and Hessian typically
perform worse due to poor scale localization. For compar-
ison, the traditional repeatability scores averaged over the
datasets without penalizing overlap [16] are EdgeFoci 24%,
DOG 12%, HarLap 25%, Harris 17%, HesAff 18%, HesLap
22%, Hessian 19% and MSER 18%.

Descriptor uniqueness In the previous section, we mea-
sured performance based on repeatability of the detectors.
While the repeatability measure describes how often we can
match the same regions in two images, it does not measure
the uniqueness of the interest point descriptors. Unique de-
scriptors are essential for avoiding false matches, especially
in applications with large databases. As stated before, re-
dundant interest points across scales may create similar de-
scriptors. Interest points that are only detected on very spe-
cific image features may also reduce the distinctiveness of
descriptors.

We compute descriptor uniqueness using the state-of-
the-art daisy descriptor [24] to describe the image regions
for all detectors (similar results are achieved with SIFT
[11].) Given the image descriptors for a pair of images, we
find the nearest neighbors for each descriptor in the other
image. Using our repeatability criterion described above,
it is determined whether each pair of nearest neighbor de-
tections correspond. Each pair is either assigned to a pos-
itive (repeatable) set of detections or a negative set. In the
negative detections we also include the second best nearest
neighbor match to obtain a better estimate of the distribu-
tion of negative matches. Finally, we create an ROC curve
by varying the threshold on the descriptor distance ratio [11]
and compute the number of false positives and true positives
below the threshold. The distance ratio is the ratio between
the distance of the best match and second best match in an



Figure 9. Graphs showing the repeatability with penalized overlap for 8 datasets using 7 different detectors.

Figure 10. ROC curves showing the uniqueness of the descriptors
generated from 8 different detectors averaged over 8 datasets.

image pair. We use the distance ratio or ratio test, since this
criterion is commonly used to select matches and has shown
good performance [11].

Figure 10 shows the uniqueness measure across all de-
tectors as ROC curves. The plots show strong performance
by both the edge foci and DoG detectors, while Harris, Hes-
sian and MSER perform the worst.

Notice that the detectors have a tradeoff between unique-
ness and repeatability. A detector that finds specific image
structures may be very repeatable, but the corresponding
features will not be unique. As a result, detectors need to be
designed to perform well on both measures. For instance,
Harris Laplace and Hessian Laplace are more repeatable but
not as unique, where as DoG is more unique but not as re-
peatable. We believe, edge foci detectors maintain better
balance between these tradeoffs.

4.1. Applications

In this section, we test the various approaches using
applications that commonly use interest point detections.
Specifically, we test the detectors in both image alignment
and image retrieval applications.

We test the usefulness of the detectors in image align-
ment using a standard RANSAC approach. It is assumed

Table 1. (top) Percentage of image pairs in which RANSAC found
the correct alignment for each descriptor type (EF: Edge Foci,
DoG, HeL: Hessian Laplace, HaL: Harris Laplace, HeA: Hes-
sian Affine, HaA: Harris Affine, Hes: Hessian, Har: Harris and
MSER.) The mean of the Average Precisions (AP) for retrieving
images of 11 buildings in the Oxford building dataset using bag-
of-words (middle) and spatial verification (bottom).

Percentage correct: RANSAC alignment
EF DoG HeL HaL HeA HaA Hes Har MSER

53.0 40.9 47.4 50.9 47.3 48.8 38.4 39.6 43.9

Mean AP Bag-of-words: Oxford buildings
EF DoG HeL HaL HeA HaA Hes Har MSER

44.0 36.5 41.5 45.2 35.1 34.8 40.1 43.2 24.7

Mean AP Spatial Verification: Oxford buildings
EF DoG HeL HaL HeA HaA Hes Har MSER

47.0 43.8 41.8 47.2 37.0 38.2 37.7 39.3 30.5

the images are related by an homography. We evaluate their
performance on the 8 image sets described above that con-
tain varying amounts of illumination changes, scaling and
projective distortions. The percentage of all images pairs
from each dataset with correctly computed homographies
are shown in Table 1. All of the of detectors perform well
on the datasets Boat, Graffiti and Light from [17], but there
exists more variation on the newer datasets. Overall Edge
Foci (53.0%) performs the best followed by Harris Laplace
(50.9%) and Harris Affine (48.9%).

Next, we test our detector on the image retrieval task
using the Oxford Building dataset [20]. We use two ap-
proaches. In our first approach we use a Bag-of-words
model with hierarchical K-means. Three levels are used
with a branching factor of 80, resulting in 512,000 visual
words. We use a stop list containing the 8,000 most com-
monly occurring words. A new vocabulary is built for each
detector and matches are ranked based on the histogram
intersection. Our second approach uses the same bag-of-



words model with the addition of spatial verification. Spa-
tial verification is achieved using a three degree of freedom
(position and scale) voting scheme between corresponding
interest points. Using the code supplied by [20], we com-
pute the mean of the average precision scores for each de-
tector across all 11 buildings in the dataset. The results for
both methods are shown in Table 1. Both Edge Foci and
Harris Laplace achieve good results in both tests. It is inter-
esting to notice that detectors with good localization (Edge
Foci, DoG, MSER, etc.) get a larger performance boost
from spatial verification than those with poor localization
(Hessian, Harris).

Examining the performance of each query in isolation,
it is clear that the accuracy of the detector is dependent on
the content of the scene. While Harris Laplace and Edge
Foci share similar average accuracies, the results on each
query can vary significantly. For instance, Harris Laplace
performs better on the ”ashmolean” Oxford building, while
Edge Foci performs significantly better on ”bodleian” and
”pitt rivers”. For best results, it may be beneficial to use
multiple detectors.

5. Discussion
Orientation dependent filtering is critical for localizing

interest points using edge information. If a standard spatial
filter such as a Laplacian is used directly on the edge re-
sponses [18], numerous false peaks and ridges occur. Due
to the peakiness of our filter, we found it unnecessary to fil-
ter local maxima based on the ratio of principle curvatures
as proposed by [11]. While not shown in this paper, the fil-
ter responses could be used for affine fitting similar to [16].

Due to the non-linear operations performed by our fil-
ter, and orientation dependent filtering, our detector is
more computationally expensive than previous approaches
[11, 13, 17]. The average run time for our detector on a
640× 480 image is 4.25 seconds on a 2.53GHz Intel CPU.
However, the filters applied to the images could easily be
mapped to a GPU. The filters applied to the oriented nor-
malized edge images f̂i may also be computed in parallel.

In conclusion, we propose a method for detecting inter-
est points using edge foci. The positions of the edge foci
are computed using normalized edges that are more invari-
ant to non-linear lighting changes and background clutter.
We show improved results over previous works on numer-
ous datasets with significant variation in lighting and occlu-
sions.
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