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Abstract

This paper addresses the problem of image alignment us-
ing direct intensity-based methods for affine and homogra-
phy transformations. Direct methods often employ scale-
space smoothing (Gaussian blur) of the images to avoid lo-
cal minima. Although, it is known that the isotropic blur
used is not optimal for some motion models, the correct blur
kernels have not been rigorously derived for motion models
beyond translations. In this work, we derive blur kernels
that result from smoothing the alignment objective function
for some common motion models such as affine and homog-
raphy. We show the derived kernels remove poor local min-
ima and reach lower energy solutions in practice.

1. Introduction

It is one of the most fundamental problems in computer
vision to establish alignment between images. This task is
crucial for many important problems such as structure from
motion, recognizing an object from different viewpoints,
and tracking objects in videos. Roughly speaking, main-
stream image alignment techniques can be categorized into
“intensity-based” and “feature-based” methods. Intensity-
based methods use dense pixel information (such as bright-
ness pattern or correlation) integrated from image regions
to estimate the geometric transformation [17]. In contrast,
feature-based methods first extract a sparse set of local fea-
tures from individual images, and then establish correspon-
dence among them to infer the underlying transformation
(for larger regions) [28].

In many applications intensity-based methods are ap-
pealing due to their direct access to richer information (i.e.
to every single pixel) [17]. This can be useful, for example,
when working with semi-regular patterns that are difficult
to match by local features [31]. However, the practical per-
formance of direct intensity methods can be undermined by

the associated optimization challenge [39]. Specifically, it
is well-known that optimizing a cost function that directly
compares intensities of an image pair is highly susceptible
to finding local minima [14]. Thus, unless very good initial-
ization is provided, plain direct alignment of image intensi-
ties may lead to poor results.

Lucas and Kanade addressed the problem of reducing lo-
cal minima in direct methods by adopting a coarse-to-fine
Gauss-Newton scheme [29]. The Gauss-Newton scheme
uses a first order Taylor’s approximation to estimate dis-
placements, which is typically violated except when the dis-
placements are small. Lucas and Kanade overcome this lim-
itation by initially using a coarse resolution image to reduce
the relative magnitude of the displacements. The displace-
ments are iteratively refined using the displacements com-
puted at coarser scales to initialize the finer scales. This re-
sults in the first order Taylor’s expansion providing a better
approximation and a reduction in local minima at each iter-
ation. An alternative to reducing the resolution of the image
is to utilize an isotropic Gaussian kernel to blur the image,
so that the higher-order terms in the Taylor’s expansion are
negligible.

It was later shown that such a coarse-to-fine scheme is
guaranteed to recover the optimal displacement under some
mild conditions [24]. Although a guarantee of correctness
is only established for translational motion, the notion of
coarse-to-fine smoothing followed by local approximation
has been adopted in computer vision to matching with al-
most all parametric transformation models [3, 18, 29, 37,
41, 42]. Despite its popularity, there are serious theoretical
and practical issues with the Lucas-Kanade scheme when
applied to non-translational motions. For example, if the
transformation is scaling, it is easy to show that the Hes-
sian of the image function may grow proportional to the
distance from the origin. To compensate for this effect,
stronger smoothing is required for points farther from the
origin.
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In this paper, we propose Gaussian smoothing the objec-
tive function of the alignment task, instead of the images,
which was in fact the original goal of coarse-to-fine image
smoothing techniques. In particular, we derive the theoret-
ically correct image blur kernels that arise from (Gaussian)
smoothing an alignment objective function. We show that,
for common motion models, such as affine and homogra-
phy, there exists a corresponding integral operator on the
image space. We refer to the kernels of such integral op-
erators as transformation kernels. As we show, all of these
kernels are spatially varying as long as the transformation
is not a pure translation, and vary from those heuristically
suggested by [7] or [40].

Our goal is to improve understanding of the optimization
problems associated with intensity-based image alignment,
so as to improve its practical performance and effectiveness.
We do not advocate that direct intensity-based alignment is
better or worse than feature-based methods.

2. Related Works
This paper focused on optimization by Gaussian smooth-

ing the objective function combined with a path-following
scheme. In fact, this optimization approach belongs to a
large family of methods. All these methods hope to escape
from brittle local minima by starting from a “simplified”
problem and gradually deforming it to the desired prob-
lem. This concept has been widely used across different
disciplines under different names and variations. Exam-
ples includes graduated optimization [9] in computer vi-
sion, homotopy continuation [1] in numerical methods, de-
terministic annealing [35] in machine learning, the diffusion
equation method [33] in chemistry, reward shaping [20] in
robotics, etc. Similar concept for discrete spaces has also
been used [4, 5, 21, 38].

The popularity of “isotropic Gaussian convolution” for
image blurring is, in part, a legacy of scale-space theory.
This influential theory emerged from a series of seminal
articles in the 80’s [19, 46, 47]. This theory shows that
“isotropic Gaussian convolution” is the “unique” linear op-
erator obeying some least commitment axioms [25]. In par-
ticular, this operator is unbiased to location and orientation,
due to its convolutional and isotropic nature. Later, Lin-
deberg extended scale-space theory to cover affine blur by
anisotropic spatially invariant kernels [27, 26].

Nevertheless, it is known that the human eye has pro-
gressively less resolution from the center (fovea) toward the
periphery [32]. In computer vision, spatially varying blur
is believed to benefit matching and alignment tasks. In that
direction, Berg and Malik [7] introduced the notion of “ge-
ometric blur” and suggested some spatially varying kernels
inspired by that. However, their kernels are derived heuris-
tically, without a rigorous connection to the underlying geo-
metric transformations. Some limitations of traditional im-

Algorithm 1 Alignment by Gaussian Smoothing.
1: Input: f1 : X → R, f2 : X → R, θ0 ∈ Θ, . . .

The set {σk} for k = 1, . . . ,K s.t. 0 < σk+1 < σk
2: for k = 1→ K do
3: θk = local maximizer of z(θ;σk) initialized at θk−1

4: end for
5: Output: θK

age smoothing are discussed in [36] and coped using stacks
of binary images. That work, however, still uses isotropic
Gaussian kernel for smoothing images of the stack.

3. Notation and Definitions
The symbol , is used for equality by definition. We use

x for scalars, x for vectors,X for matrices, and X for sets.
scalar valued and vector valued functions are respectively
denoted by f(.) and f(.). We use ‖x‖ for ‖x‖2 and ∇
for ∇x. Finally, ? and ~ denote convolution operators in
spaces Θ and X respectively.

Given a signal f : X → R, e.g. a 2D image, we define
a signal warping or domain transformation parameterized
by θ as τ : X × Θ → X . Here θ is concatenation of all
the parameters of a transformation. For example, in case of
affine Ax + b with x ∈ R2, θ is a 6 dimensional vector
containing the the elements ofA and b.

The isotropic normalized Gaussian with covariance σ2I
is denoted by k(x;σ2), where I is the identity matrix.
The anisotropic normalized Gaussian with covariance ma-
trix Σ is denoted by K(x; Σ). The Fourier transform
of a real valued function f : Rn → R is f̂(ω) ,∫
Rn f(x)e−iω

Txdx and the inverse Fourier transform is
f̂(x) = (2π)−n

∫
Rn f(ω)eiω

Txdω.

4. Smoothing the Objective
We use the inner product between the transformed f1 and

the reference signal f2 as the alignment objective function.
Note that f1 and f2 are the input to the alignment algorithm,
and in many scenarios may be different from the original
signals. For example, they may be mean subtracted or nor-
malized by their `2 norm. The alignment objective function
is denoted by h(θ) and defined as follows,

h(θ) ,
∫
X
f1(τ (x,θ)) f2(x) dx , (1)

where f1(τ (x,θ)) is signal f1 warped by τ (x,θ). Our
goal is to find the parameters θ∗ that optimize the objec-
tive function (1). In practice, h may have multiple local
optima. Thus, instead of directly optimizing h, we itera-
tively optimize a smoothed version of h in a coarse-to-fine
approach. We denote the objective function h(θ) obtained
after smoothing as z(θ, σ), where σ determines the amount
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(a) (b) (c) (d)

Figure 1. Basin of attraction for scale alignment. Egg shape input images are shown in (a) and (b), where black and white pixels are
respectively by -1 and 1 intensity values. Obviously, the correct alignment is attained at θ = −1, due to reflection symmetry. The objective
function for zLK is shown in (c) and for z in (d). Blue, green and red respectively indicate local maxima, global maximum and basin of
attraction originating from local maxima of highest blur.

of smoothing. Given z(θ, σ), we adopt the standard opti-
mization approach described by Algorithm 1. That is, we
use the parameters θk−1 found at a coarser scale to initial-
ize the solution θk found at each progressively finer scale.

In the Lucas-Kanade algorithm [29], instead of smooth-
ing the objective function, they directly blur the images.
This results in the following form for the objective function,

zLK(θ, σ) ,
∫
X

[f1(τ ( . ,θ))~k( . ;σ2)] [f2~k( . ;σ2)](x) dx .

Image smoothing is done in hope of eliminating the brit-
tle local optima in the objective function. However, if the
latter is our goal, we propose the correct approach is to blur
the objective function directly1,

z(θ, σ) , [h ? k( · , σ2)](θ) .

The optimization landscape of these two cases may differ
significantly. To illustrate, consider the egg shape images in
Figures 1(a) and 1(b). If we assume the only parameter sub-
ject to optimization is the scale factor, i.e. τ (x, θ) = θx,
the associated optimization landscape is visualized in figure
1(c) for zLK and 1(d) for z. Clearly, z has a single basin
of attraction that leads to the global optimum, unlike zLK
whose basins do not necessarily land at the global optimum.

5. Transformation Kernels
Our is to perform optimization on the smoothed objec-

tive function. Smoothing the objective function refers to a
convolution in the space of transformation parameters with
a Gaussian kernel. Unfortunately, performing this convo-
lution may be computationally expensive when the dimen-
sionality of the transformation space is large, e.g. eight for
homography of 2D images. This section introduces the no-
tion of transformation kernels, which enables us to equiva-
lently write the smoothed objective function using some in-
tegral transform of the signal. This integration is performed

1[h?k( · , σ2)](θ) is bounded when either signals decay rapidly enough
or have bounded support. In image scenario, the latter always holds.

in the image space (e.g. 2D for images), reducing the com-
putational complexity.

Definition Given a domain transformation τ : X × Θ →
X , where X = Rn and Θ = Rm. We define the transfor-
mation kernel associated with τ as uτ ,σ : Θ×X ×X → R
to be the function satisfying the following integral equation
for all Schwartz2 functions f ,

[f(τ (x, ·)) ? k(·;σ2)] (θ) =

∫
X
f(y)uτ ,σ(θ,x,y)dy .(2)

Using this definition, the smoothed alignment objective
z can be equivalently written as the following,

z(θ, σ) (3)
, [h ? k( · , σ2)](θ) (4)

=

∫
X

(
f2(x)[f1(τ (x, .)) ? k( · , σ2)](θ)

)
dx (5)

=

∫
X

(
f2(x)

(∫
X
f1(y)uτ ,σ(θ,x,y) dy

))
dx , (6)

where the integral transform in (6) uses the definition of ker-
nel provided in (2). A procedure for computing the integral
transform (6) will be provided in section 6.

5.1. Derivation of Kernels

Proposition 1 The following choice of u is a solution to the
definition of a kernel provided in (2). Here X = Ω = Rn.

uτ ,σ(θ,x,y)

=
1

(2π)n

∫
Ω

(∫
Θ

eiω
T (τ (x,t)−y)k(t− θ;σ2) dt

)
dω (7)

2A Schwartz function is one whose derivatives are rapidly decreasing.
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Name θ τ (x,θ) uτ ,σ(θ,x,y)
Translation dn×1 x+ d k(τ (x,θ)− y;σ2)

Translation+Scale [an×1 , dn×1 ] aTx+ d K(τ (x,θ)− y;σ2 diag([1 + x2
i ]))

Affine [ vec(An×n) , bn×1 ] Ax+ b k(τ (x,θ)− y;σ2(1 + ‖x‖2))

Homography [ vec(An×n) , bn×1 , cn×1 ] 1
1+cTx

(Ax+ b) q(θ,x,y, σ) e−p(θ,x,y,σ)

Table 1. Kernels for some of the common transformations arising in vision (for all kernels n ≥ 1 except homography where n = 2).

(a) (b) (c) (d)

Figure 2. Visualization of affine and homography kernels specified byA0 = [2 0.2 ; −0.3 4], b0 = [0.15 −0.25] (also c0 = [1 −5]
for homography). Here x ∈ [−1, 1] × [−1, 1], σ = 0.5 and y = (1, 1) or y = (0, 0). More precisely, affine kernels in (a) u(θ =
θ0,x,y = (0, 0)) (b) u(θ = θ0,x,y = (1, 1)) and homography kernels in (c) u(θ = θ0,x,y = (0, 0)) (d) u(θ = θ0,x,y = (1, 1))
.

The proof uses the Fourier representation f(x) =

(2π)−n
∫

Ω
f̂(ω)eiω

Tx dω, and then application of Parse-
val’s theorem. See the appendix for details.

Now by applying the result of proposition 1 to the de-
sired transformation τ , we can compute the integrals3 and
derive the corresponding kernel function as shown in Table
1 (see also figure 2 for some visualization). The functions
q and p, associated with the homography kernel, are each a
ratio of polynomials4.

The complete derivation of these kernels is provided in
the appendix. Nevertheless, below we present a relatively
easy way to check the correctness of the kernels. Specifi-
cally, we check two necessary conditions of the heat equa-
tion and the limit behavior, which must hold for the kernels.

3Although the integral in (7) does not necessarily have a “closed-form”
for any arbitrary transformation τ , it does so for most of the transforma-
tions we care about in practice, as listed in Table 1.

4Complete expression for the homography kernel qe−p is as below:

γ0 ,
1

1 + ‖x‖2

γ1 , 1 + cTx

v , Ax+ b

q , γ0
(γ0‖x‖2yT v + γ1)2 + σ2‖x‖2(1 + γ0‖x‖2‖y‖2)

2πσ2(1 + γ0‖x‖2‖y‖2)
5
2

p ,
‖γ1y − v‖2 + γ0‖x‖2(v2y1 − v1y2)2

2σ2(1 + ‖x‖2(1 + ‖y‖2))
.

5.1.1 Heat Equation

Consider the convolution [f(τ (x, · )) ? k( · ;σ)](θ). Such
Gaussian convolution obeys the heat equation [45]:

σ∆θ[f(τ (x, · )) ? k( · ;σ)](θ)

= (∂/∂σ)[f(τ (x, · )) ? k( · ;σ)](θ) . (8)

Since we argue that [f(τ (x, · )) ? k( · ;σ)](θ) =∫
X f(y)uτ ,σ(θ,x,y) dy, the following must hold:

σ∆θ

∫
X
f(y)uτ ,σ(θ,x,y) dy

=
∂

∂σ

∫
X
f(y)uτ ,σ(θ,x,y) dy (9)

≡
∫
X
f(y)σ∆θuτ ,σ(θ,x,y) dy

=

∫
X
f(y)

∂

∂σ
uτ ,σ(θ,x,y) dy (10)

⇐ σ∆θuτ ,σ(θ,x,y) =
∂

∂σ
uτ ,σ(θ,x,y) , (11)

where⇐ in (11) means sufficient condition. Now it is much
easier to check the identity (11) for the provided kernels.
For example, in the case of an affine kernel k(τ (x,θ) −
y;σ2(1 + ‖x‖2)), both sides of the identity are equal to
(‖τ (x,θ)−y‖2
σ3(1+‖x‖2) −

n
σ ) k(τ (x,θ)− y;σ2(1 + ‖x‖2)).
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5.1.2 Limit Behavior

When the amount of smoothing approaches zero, the inte-
gral transform must recover the original function. Formally,
we want the following identity to hold,

lim
σ→0+

∫
X
f(y)uτ ,σ(θ,x,y) dy = f(τ (x,θ)) . (12)

The sufficient condition for the above identity is that
limσ→0+ uτ ,σ(θ,x,y) = δ(τ (x,θ) − y), where δ is
Dirac’s delta function. This is trivial for the kernels of affine
and its special cases; since the kernel itself is a Gaussian,
limσ→0+ is equivalent to kernel’s variance approaching to
zero (for any bounded choice of ‖x‖). It is known that when
the variance of the normal density function tends to zero it
approaches Dirac’s delta function.

5.2. Remarks

Two interesting observations can be made about Table 1.
First, from a purely objective standpoint, the derived kernels
exhibit “foveation”, similar to that in the eye. Except for
translation, all the kernels are spatially varying with density
decreasing in ‖x‖. This is very easy to check for transla-
tion+scale and affine kernels, where they are spatially vary-
ing Gaussian kernels whose variance depends and increases
in ‖x‖.

Second, the derived kernels are not necessarily rotation
invariant. Therefore, the blur kernels proposed by Berg and
Malik [7] are unable to represent the geometric transforma-
tions listed in Table 1. In fact, to the best of our knowledge,
this work is the first that rigorously derives kernels for such
transformations.

5.3. Image Blurring vs. Objective Blurring

It is now easy to check that for the “translation transfor-
mation”, Gaussian convolution of the alignment objective
with respect to the optimization variables is equivalent to
applying a “Gaussian convolution” to the image f1. This is
easy to check by plugging the translation kernel from Table
1 into the smoothed objective function (6) as below:

z(θ, σ) (13)

=

∫
X

(
f2(x)

∫
X
f1(y)uτ ,σ(θ,x,y) dy

)
dx (14)

=

∫
X

(
f2(x)

∫
X
f1(y)k(θ + x− y;σ2) dy

)
dx(15)

=

∫
X

(
f2(x) [f1( · ) ~ k( · ;σ2)] (θ + x)

)
dx . (16)

However, such equivalence does not hold for other trans-
formations, e.g. affine. There, Gaussian convolution of the
alignment objective with respect to the optimization vari-
ables is equivalent to an “integral transform” of f1, which

cannot be expressed by the convolution of f1 with some spa-
tially invariant convolution kernel in image space as shown
below for affine case:

z(θ, σ) (17)

=

∫
X

(
f2(x)

∫
X
f1(y)uτ ,σ(θ,x,y) dy

)
dx (18)

=

∫
X

∫
X

f2(x)f1(y)e
− ‖Ax+b−y‖

2

2σ2(1+‖x‖2)

(σ22π(1 + ‖x‖2))
n
2

dydx. (19)

6. Computation of the Integral Transform
Kernels can offer computational efficiency when com-

puting the smoothed objective (3).
If the kernel u is affine or one of its special cases, then

it is a Gaussian form5 in variable y according to Table 1.
In such cases, expressing f1 by Gaussian Basis Functions6,
piecewise constant or piecewise polynomial forms leads to
a closed form of the integral transform. Details are provided
in sections 6.1 and 6.2.

If the kernel u is not Gaussian in y (such as in homogra-
phy), the derivation of a closed form for the integral trans-
form may not be possible. However, numerical integration
is done much more efficiently using the kernelized form
(6) compared to the original form (3). For example, when
n = 2, integration in the original form is over θ and for
homography dim(θ) = 8. However, the equivalent integral
transform is over y, where dim(y) = 2.

6.1. Gaussian RBF Representation of f1

The following result addresses the representation
of f1 by Gaussian Radial Basis Functions (GRBFs)

φ(x;x0, δ0) = e
− ‖x−x0‖

2

2δ20 ; the more general case of GBFs
can be obtained in a similar fashion.

Proposition 2 Suppose f1 =
∑p
k=1 akφ(y;xk, δk), where

φ(x;xk, δk) = e
− ‖x−xk‖

2

2δ2
k . Assume that uτ ,σ(θ,x,y) is

Gaussian in variable y. Then the following identity holds.

∫
X
f1(y)uτ ,σ(θ,x,y) dy =

p∑
i=1

ai(
δi√
δ2
i + s2

)ne
− ‖xi−τ‖

2

2(δ2
i
+s2) .

See the appendix for a proof.

5We say a kernel is Gaussian in y when it can be written as
uτ ,σ(θ,x,y) = k(τ (θ,x) − y ; s2(θ,x)), where s : Θ × X → R+

is an arbitrary map and the maps τ and s are independent of y.
6A GBF is a function of form Φ(x;x0,∆0) =

exp(− (x−x0)
T∆0

−1(x−x0)
2

), where the matrix ∆ is positive definite.

It is known that Gaussian RBFs φ(x;x0, δ0) = exp(− ‖x−x0‖2

2δ20
),

which are a special case of GBFs, are general function approximators.
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6.2. Piecewise Constant Representation of f1

The following result addresses the representation of f1 as
piecewise constant; the extension to piecewise polynomial
is straightforward.

Proposition 3 Suppose f1(x) = c on a rectangular piece
x ∈ X † , Πn

k=1[xk, xk]. Assume that uτ ,σ(θ,x,y) has
the formK(qτ (θ)−y; diag(s2

1, · · · , s2
n)), where qτ : Θ→

Rn is some map. Then the following identity holds:

∫
X †
f1(y)uτ ,σ(θ,x,y) dy

=

n∏
k=1

1

2

(
erf
(qτ k − xk√

2sk

)
− erf

(qτ k − xk√
2sk

))
.

The proof uses separability of integrals for diagonal K.

7. Regularization
Regularization may compensate for the numerical insta-

bility caused by excessive smoothing of the objective func-
tion and improve the well-posedness of the task. The lat-
ter means if there are multiple transformations that lead to
equally good alignments (e.g. when image content has sym-
metries), the regularization prefers the closest transforma-
tion to some given θ0. This makes existence of a unique
global optimum more presumable. We achieve these goals
by replacing f1 with the following regularized version:

f̃1(τ ( · , · ),x,θ,θ0, r) , k(θ−θ0; r2)f1(τ (x;θ)). (20)

Regularization shrinks the signal f1 for peculiar trans-
formations with very large ‖θ − θ0‖. Typically θ0 is set to
the identity transformation τ (x;θ0) = x. Using (20), the
regularized objective function can be written as below:

h̃(θ;θ0, r) ,
∫
X

(
f̃1(τ ,x,θ,θ0, r)f2(x)

)
dx

=

∫
X
k(θ − θ0; r2)f1(τ (x;θ))f2(x) dx .

Consequently, the smoothed regularized objective is as
follows:

z̃(θ,θ0, r, σ) , [h̃( · ,θ0, r) ? k( · ;σ2)](θ). (21)

This form is still amenable to kernel computation using
the following proposition.

Proposition 4 The regularized objective function
z̃(θ,θ0, r, σ) can be written using transformation ker-
nels as follows.

z̃(θ,θ0, r, σ) (22)

= [h̃( · ,θ0, r) ? k( · ;σ2)](θ) (23)

=

∫
X

(
k(θ − θ0; r2 + σ2)f2(x)... (24)

·
∫
X

(
f1(y)uτ , rσ√

r2+σ2
(
r2θ + σ2θ0

r2 + σ2
,x,y)

)
dy
)
dx .

See the appendix for the proof.

8. Experiments
We evaluate the performance of the proposed scheme for

smoothing the alignment objective function against tradi-
tional Gaussian blurring and no blurring at all. We use the
images provided by [13] (see figure 3-top). This dataset
consists of five planar scenes, each having six different
views of increasingly dramatic transformations.

For the proposed method, we use the homography ker-
nel. The goal is to maximize the correlation between a pair
of views by transforming one to the other. The local max-
imization in Algorithm 1 and the other methods used for
comparison is achieved by a coordinate ascent method7 with
a naive line search. The images are represented by a piece-
wise constant model. The integral transform in Algorithm
1 is approximated by the Laplace method.

Pixel coordinates were normalized to range in [−1, 1].
Images f1 and f2 were converted to grayscale and were
subtracted by their joint mean (i.e. (f̄1 + f̄2)/2, where f̄1

is the average intensity of f1) as a preprocessing step. The
sequence of σ (for both the proposed kernel and Gaussian
kernel) starts from σ = 0.1, and is multiplied by 2/3 in each
iteration of algorithm until it falls below 0.0001. The initial
transformation θ0 was set to the identity, i.e. A0 = I and
b0 = c0 = 0. Since the initial σ is large and the images lack
significant areas of symmetry, no regularization was used.

The performance of these methods is summarized in fig-
ure 3-bottom. Each plot corresponds to one of the scenes in
the dataset. For each scene, there is one rectified view that
is used as f1. The rest of five views, indexed from 1 to 5, in
increasing order of complexity8 are used as f2. The vertical
axis in the plots indicates the normalized correlation coeffi-
cient (NCC) between f2 and transformed f̃1. It can clearly
be observed that while Gaussian blur sometimes does a lit-
tle bit better than no blur, the proposed smoothing scheme
leads to a much higher NCC value9.

7A block coordinate ascent is performed by partitioning the 8 parame-
ters of homography to three classes, those that compriseA, b and c. This
improves numerical stability because the sensitivity of parameters within
each partition are similar.

8Here the complexity of the view is referred to how drastic the homog-
raphy transformation is, in order to bring it to the rectified view.

9The code for reproducing our results is available at http://
perception.csl.illinois.edu/smoothing.
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Figure 3. Top: Representative rectified views from the dataset provided in [13]. Bottom: NCC value after alignment. Horizontal axis is
the view index (increasing in complexity) of the scene. Four views are used for each scene, each one being as f2 and compared against f1,
which is a rectified view in the dataset.

9. Conclusion & Future Directions

This paper studied the problem of image smoothing for
the purpose of alignment by direct intensity-based methods.
We argued that the use of traditional Gaussian image blur-
ring, mainly inspired by the work of Lucas and Kanade [29],
may not be suitable for non-displacement motions. Instead,
we suggested directly smoothing the alignment objective
function. This led to a rigorous derivation of spatially vary-
ing kernels required for smoothing the objective function of
common model-based alignment tasks including affine and
homography models.

The derivation process of the kernels in this paper may
provide some insights for blur kernels in other tasks such as
image deblurring, motion from blur, matching, optical flow,
etc. For example, in image deblurring, the blur caused by
the motion of the camera or by scene motion typically leads
to spatially varying blur. The estimation of such kernels is
very challenging [10, 44, 16]. Yet if the motion is close to
the models discussed in this paper, our results may provide
new insights for estimation of the blur kernel. Similarly,
our kernels could be relevant to tasks involving motion blur
[12], due to the physical relationship between motion esti-
mation and blur estimation [11]. The coarse-to-fine scheme
is a classic and very effective way to escape from poor lo-
cal minima in optical flow estimation [2, 43]. Using the
proposed kernels may boost the quality of the computed so-
lution.

Another possible application which may benefit from
our proposed kernels is visual detection and recognition.
Heuristic spatially-varying kernels [7, 40] have been suc-
cessfully utilized in face detection [8] and object recogni-
tion [6, 15]. Thus, our results may provide new perspective
on using blur kernels for such tasks in a more principled
way. Another related machinery for visual recognition tasks
is convolutional deep architectures [22, 23, 30, 34, 48].
These methods apply learnable convolution filters to the
scale-space representation of the images, hence gain trans-

lation and scale invariance. Utilizing the proposed kernels
instead of traditional convolutional filters and scale-space
representation between layers might extend the invariance
of these methods to a broader range of transformations.

Finally there is a lot of room to improve the computa-
tional efficiency of using the proposed kernels. In this work,
the integral transforms are evaluated on a dense grid. How-
ever, since the kernels are smooth and localized in space,
one might be able to get a good approximate of the integral
transform by merely evaluating it at a small subset of image
points.
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1 Notation
The symbol , is used for equality by definition. Also, we use x for scalars, x for
vectors, X for matrices, and X for sets. In addition, f(.) denotes a scalar valued
function and f(.) a vector valued function. Unless stated otherwise, ‖x‖ means ‖x‖2
and ∇ means ∇x. Finally, ? and ~ denote convolution operators in spaces Θ and X
respectively.

2 Definitions
Definition [Domain Transformation] Given a function f : X → R and a vector field
τ : X × Θ → X , where X = Rn and Θ = Rm. We refer to τ (x,θ) as the domain
transformation parameterized by θ. Note that the parameter vector θ is constructed by
concatenation of all the parameters of a transformation. For example, in case of affine
Ax + b with x ∈ R2, θ is a 6 dimensional vectors containing the elements of A and
b.

Definition [Isotropic Gaussian]

k(x;σ2) ,
1

(
√

2πσ)dim(x)
e−
‖x‖2

2σ2 . (1)

Definition [Anisotropic Gaussian]

K(x;Σ) ,
1

(
√

2π)dim(x)
√

det(Σ)
e−

xTΣ−1x
2 .

Definition [Fourier Transform]
We use the following convention for Fourier transform. The Fourier transform of

a real valued function f : Rn → R is f̂(ω) =
∫
Rn f(x)e−iω

Txdx and the inverse
Fourier transform is f̂(x) = (2π)−n

∫
Rn f(ω)eiω

Txdω.

Definition [Transformation Kernel]
Given a domain transformation τ : Θ×X×Θ→ X , whereX = Rn and Θ = Rm.

We define a transformation kernel associated with τ as uτ ,σ : X × X → R such that
it satisfies the following integral equation,

∀f :

[f(τ (x, ·)) ? k(·;σ2)] (θ) =

∫
X
f(y)uτ ,σ(θ,x,y)dy , (2)

where f is assumed to be a Schwartz function. Therefore, any transformation
kernel that satisfies this equation allows the convolution of the transformed signal
with the Gaussian kernel be equivalently written by the integral transform of the non-
transformed signal with the kernel uτ ,σ(θ,x,y).

Definition [Smoothed Regularized Objective]
We define the smoothed regularized objective as the following.

z̃(θ,θ0, r, σ) , [h̃( · ,θ0, r) ? k( · ;σ2)](θ). (3)

10
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3 Proof of Results in the Paper
Proposition 0 The following identity holds for the product of two Gaussians.

k(τ −µ1;σ2
1) k(τ −µ2;σ2

2) =
e
− ‖µ1−µ2‖

2

2(σ2
1+σ2

2)

(
√

2π(σ2
1 + σ2

2))m
k(τ − σ

2
2µ1 + σ2

1µ2

σ2
1 + σ2

2

;
σ2

1σ
2
2

σ2
1 + σ2

2

) .

Proof

k(τ − µ1;σ2
1) k(τ − µ2;σ2

2)

=
1

(σ1

√
2π)m

e
− ‖τ−µ1‖

2

2σ2
1

1

(σ2

√
2π)m

e
− ‖τ−µ2‖

2

2σ2
2

=
1

(2πσ1σ2)m
e
− ‖τ−µ1‖

2

2σ2
1
− ‖τ−µ2‖

2

2σ2
2

=
1

(2πσ1σ2)m
e

−
‖τ−

σ2
1σ

2
2

σ2
1+σ2

2

(
µ1
σ2

1

+
µ2
σ2

2

)‖2

2
σ2

1σ
2
2

σ2
1+σ2

2

− ‖µ1−µ2‖
2

2(σ2
1+σ2

2)

(4)

=
e
− ‖µ1−µ2‖

2

2(σ2
1+σ2

2)

(
√

2π(σ2
1 + σ2

2))m
k(τ − σ2

2µ1 + σ2
1µ2

σ2
1 + σ2

2

;
σ2

1σ
2
2

σ2
1 + σ2

2

) .

Note that (4) is derived by completing the square.
�

Proposition 1 The following choice of u,

uτ ,σ(θ,x,y)

=
1

(2π)n

∫
Ω

(∫
Θ

eiω
T (τ (x,t)−y)k(t− θ;σ2) dt

)
dω (5)

is a solution to the definition of kernel provided in (2). Here X = Ω = Rn, and
k(t;σ2) is some function k( . ;σ) : X → R with some parameter σ, which in our case
is simply an isotropic Gaussian with bandwidth σ.

Proof The key to the proof is writing f(x) by its Fourier form f(x) = (2π)−n
∫

Ω
f̂(ω)eiω

Tx dω,
where Ω = Rn (similar to X = Rn).
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[f(τ (x, .))
Θ

~ k( . σ2)](θ)

= [

(
1

(2π)n

∫
Ω

f̂(ω)eiω
T τ (x,.) dω

)
Θ

~ k( . σ2)](θ)

=
1

(2π)n

∫
Θ

(∫
Ω

f̂(ω)eiω
T τ (x,t) dω

)
k(t− θ;σ2) dt

=
1

(2π)n

∫
Ω

f̂(ω)

(∫
Θ

eiω
T τ (x,t)k(t− θ;σ2) dt

)
dω

=
1

(2π)n

∫
X
f(y)

(∫
Ω

e−iω
Ty

(∫
Θ

eiω
T τ (x,t)k(t− θ;σ2) dt

)
dω

)
dy (6)

=
1

(2π)n

∫
X
f(y)

(∫
Ω

∫
Θ

eiω
T (τ (x,t)−y)k(t− θ;σ2) dt dω

)
dy

=

∫
X
f(y)uτ ,σ(θ,x,y) dy , (7)

where (6) uses the Parseval theorem, and (7) uses proposition’s assumption (5).
�

Proposition 2 Suppose f1 =
∑p
k=1 akφ(y;xk, δk), where φ(x;xk, δk) = e

− ‖x−xk‖
2

2δ2
k .

Assume that uτ ,σ(θ,x,y) is Gaussian in variable y. Then the following identity holds.

∫
X
f1(y)uτ ,σ(θ,x,y) dy

=

p∑
i=1

ai(
δi√
δ2
i + s2

)ne
− ‖xi−τ‖

2

2(δ2
i

+s2) .
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Proof ∫
X
f1(y)uτ ,σ(θ,x,y) dy

=

∫
X
f1(y)k(τ − y; s2) dy

=

∫
Rn

(
p∑
k=1

akφ(y;xk, δk)

)
k(τ − y; s2) dy

=

p∑
k=1

ak

(∫
Rn
φ(y;xk, δk)k(τ − y; s2) dy

)

=

p∑
k=1

ak(δk
√

2π)n
(∫

Rn
k(y − xk; δ2

k)k(τ − y; s2) dy

)

=

p∑
k=1

ak(δk
√

2π)n

∫
Rn

e
− ‖xk−τ‖

2

2(δ2
k

+s2)

(
√

2π(δ2
k + s2))n

k(y − s2xk + δ2
kτ

δ2
k + s2

;
δ2
ks

2

δ2
k + s2

) dy

(8)

=

p∑
k=1

ak(
δk√
δ2
k + s2

)ne
− ‖xk−τ‖

2

2(δ2
k

+s2)

(∫
Rn
k(y − s2xk + δ2

kτ

δ2
k + s2

;
δ2
ks

2

δ2
k + s2

) dy

)

=

p∑
k=1

ak(
δk√
δ2
k + s2

)ne
− ‖xk−τ‖

2

2(δ2
k

+s2) ,

where in (8) we use the Gaussian product result from proposition 0. �

Proposition 3 The regularized objective function z̃(θ,θ0, r, σ) can be written using
transformation kernels as follows.

z̃(θ,θ0, r, σ)

= [h̃( . ,θ0, r)
Θ

~ k( . ;σ2)](θ)

=

∫
X

(
k(θ − θ0; r2 + σ2)f2(x)

∫
X

(
f1(y)uτ , rσ√

r2+σ2
(
r2θ + σ2θ0

r2 + σ2
,x,y)

)
dy

)
dx .

Proof For computing z̃, we proceed as below.
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z̃(θ,θ0, r, σ)

= [h̃( . ,θ0, r) ? k( . ;σ2)](θ)

= [

(∫
X

(
k(θ − θ0; r2)f1(τ (x;θ))f2(x)

)
dx

)
? k( . ;σ2)](θ)

=

∫
X

(
f2(x)[

(
k(θ − θ0; r2)f1(τ (x;θ))

)
? k( . ;σ2)](θ)

)
dx

=

∫
X

(
f2(x)

∫
Θ

(
k(θ0 − t; r2)f1(τ (x; t))k(θ − t;σ2)

)
dt

)
dx

=

∫
X

(
f2(x)

∫
Θ

(
f1(τ (x; t))

e
− ‖θ−θ0‖

2

2(r2+σ2)(√
2π(r2 + σ2)

)m k(t− σ2θ0 + r2θ

r2 + σ2
;
r2σ2

r2 + σ2
)
)
dt

)
dx

=

∫
X

(
e
− ‖θ−θ0‖

2

2(r2+σ2)(√
2π(r2 + σ2)

)m f2(x)

∫
X

(
f1(y)uτ , rσ√

r2+σ2
(
r2θ + σ2θ0

r2 + σ2
,x,y)

)
dy

)
dx .

Thus, regularized objective function from (3) leads to the following result.

z̃(θ,θ0, r, σ)

= [h̃( . ,θ0, r)
Θ

~ k( . ;σ2)](θ)

=

∫
X

(
k(θ − θ0; r2 + σ2)f2(x)

∫
X

(
f1(y)uτ , rσ√

r2+σ2
(
r2θ + σ2θ0

r2 + σ2
,x,y)

)
dy

)
dx .

�

4 Derivation of Affine and Homography Kernels
Proposition 4 Suppose n ≥ 1 is some integer and let t : Rn → (R − {0}). Then for
any real n×nmatrixA† and any real n×1 vectors b†, x, and y, the following identity
holds:

∫
A

∫
B
e
iωTAx+iωT b

t(x)
−iωTykσ(A−A†)kσ(b− b†) dA db

= k(
A†x+ b†

t(x)
− y;

σ2(1 + ‖x‖2)

t2(x)
) ,

where Ω = B = Rn and A = Rn × Rn.

Proof We proceed as below,
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∫
A

∫
B
e
iωTAx+iωT b

t(x)
−iωTykσ(A−A†)kσ(b− b†) dA db

=

∫
A

∫
B
e
i
∑n
j=1

∑
k=1nwjajkxk+i

∑n
k=1 ωkbk

t(x)
−i

∑n
k=1 ωkykkσ(A−A†)kσ(b− b†) dA db

= e−i
∑n
j=1 ωjyjΠn

j=1

(∫
Bj
e
iωj
t(x)

bjkσ(bj − b†j) dbj
)

Πn
j=1Πn

k=1

(∫
Ajk

e
iwjxk
t(x)

ajkkσ(ajk − a†jk) dajk

)
= e−i

∑n
j=1 ωjyjΠn

j=1

(
e
iωj
t(x)

b†j+
1
2σ

2(
iωj
t(x)

)2
)

(9)

Πn
j=1Πn

k=1

(
e
iwjxk
t(x)

a†jk+ 1
2σ

2(
iwjxk
t(x)

)2
)
,

where (9) uses the identity
∫
R e

axkσ(x† − x) dx = eax
†+ 1

2σ
2a2

. We proceed by
factorizing ωj and ω2

j in the exponent as the following.

=

∫
A

∫
B
e
iωTAx+iωT b

t(x)
−iωTykσ(A−A†)kσ(b− b†) dA db

= e−i
∑n
j=1 ωjyjΠn

j=1

(
e
iωj
t(x)

b†j+
1
2σ

2(
iωj
t(x)

)2
)

Πn
j=1Πn

k=1

(
e
iwjxk
t(x)

a†jk+ 1
2σ

2(
iwjxk
t(x)

)2
)

= Πn
j=1e

−iωjyj+
iωj
t(x)

b†j+
1
2σ

2(
iωj
t(x)

)2+
i(

∑n
k=1 a

†
jk
xk)

t(x)
wj+

1
2σ

2
∑n
k=1 x

2
k

t2(x)
(iwj)

2

= Πn
j=1e

iωj
b
†
j
−yj+

∑n
k=1 a

†
jk
xk

t(x)
− 1

2w
2
j

σ2(1+
∑n
k=1 x

2
k)

t2(x)

(10)

Now dividing both sides by (2π)−n and integrating w.r.t. ω, we obtain the follow-
ing.

= (2π)−n
∫

Ω

∫
A

∫
B
e
iωTAx+iωT b

t(x)
−iωTykσ(A−A†)kσ(b− b†) dA db dω(11)

= (2π)−n
∫

Ω

Πn
j=1e

iωj
b
†
j
−yjt(x)+

∑n
k=1 a

†
jk
xk

t(x)
− 1

2w
2
j

σ2(1+
∑n
k=1 x

2
k)

t2(x) dω

= Πn
j=1

(∫
Ωj

(2π)−1e
iωj

b
†
j
−yjt(x)+

∑n
k=1 a

†
jk
xk

t(x)
− 1

2w
2
j

σ2(1+
∑n
k=1 x

2
k)

t2(x) dωj

)
= Πn

j=1

(
k(
b†j − yjt(x) +

∑n
k=1 a

†
jkxk

t(x)
;
σ2(1 +

∑n
k=1 x

2
k)

t2(x)
)
)

(12)

= k(
A†x+ b†

t(x)
− y;

σ2(1 + ‖x‖2)

t2(x)
) ,
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where (12) uses the identity (2π)−1
∫
R e

iωx−ω2

2y dω = k(x; y) for y > 0.
�

Lemma 5 (Derivation of Affine Kernel) Suppose x ∈ Rn, where n ≥ 1 is some
integer. The kernel uτ ,σ(θ†,x,y) for the affine transformation τ (x) = A†x + b† is
equal to the following expression:

k
(
A†x+ b† − y;σ2(1 + ‖x‖2)

)
,

whereA† is any n× n real matrix and b† and y are any n× 1 real vectors.

Proof By (5) from Proposition 1, any u that satisfies the following equation is a kernel
for τ .

uτ ,σ(θ†,x,y) ,
1

(2π)n

∫
Ω

(∫
Θ

eiω
T (τ (x,θ)−y)kσ(θ − θ†) dθ

)
dω .

We proceed with computing u as follows:

uτ ,σ(θ†,x,y)

,
1

(2π)n

∫
Ω

(∫
Θ

eiω
T (τ (x,θ)−y)kσ(θ − θ†) dθ

)
dω

=
1

(2π)n

∫
Ω

∫
A

∫
B
eiω

T (Ax+b−y)kσ(A−A†)kσ(b− b†) dA db dω (13)

= k
(
A†x+ b† − y;σ2(1 + ‖x‖2)

)
,

where (13) applies Lemma 4 with the particular choice of t(x) = 1.
�

Proposition 6 The following indefinite integral identities hold.

∀t ∈ R , c ∈ R , p1 ∈ R p2 ∈ R++ :∫
e−p2t

2+p1t dt =
1

2

√
π

p2
e
p2
1

4p2 erf(
2p2t− p1

2
√
p2

) + c∫
te−p2t

2+p1t dt =
p1

4p2
√
p2
e
p2
1

4p2

√
π erf(

2p2t− p1

2
√
p2

)− 1

2p2
e−p2t

2+tp1 + c∫
t2e−p2t

2+p1t dt =

√
π

8p2
2

√
p2

(2p2 + p2
1)e

p2
1

4p2 erf(
2p2t− p1

2
√
p2

)− p1 + 2p2t

4p2
2

e−p2t
2+tp1 + c .

Proof The correctness of these identities can be easily checked by differentiating RHS
w.r.t. t and observing that it becomes equal to the integrand of LHS. Remember
d
dt erf(t) = 2√

π
e−t

2

.
�
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Corollary 7 The following definite integral identities hold.

∀ t ∈ R , p1 ∈ R p2 ∈ R++ :∫
R
e−p2t

2+p1t dt =

√
π

p2
e
p2
1

4p2∫
R
te−p2t

2+p1t dt =
p1

2p2
√
p2
e
p2
1

4p2

√
π∫

R
t2e−p2t

2+p1t dt =

√
π

4p2
2

√
p2

(2p2 + p2
1)e

p2
1

4p2 .

Proof Using the identities for their indefinite counterparts provided in Proposition 6,
these definite integrals are easily computed by subtracting their value at the limit t →
±∞. Note that limt→±∞ erf(t) = ±1 and that limt→±∞ f(t) exp(−p2t

2 + p1t) = 0,
where p2 > 0 and f : R→ R is such that f(t) is a polynomial in t. �

Lemma 8 (Derivation of Homography Kernel) Supposex ∈ R2. The kernel uτ ,σ(θ†,x,y)

for the homography transformation τ (x) = (A†x+ b†)(1 + c†
T
x)−1 is equal to the

following expression:

uτ ,σ(θ†,x,y) = qe−p ,

where the auxiliary variables are as below:

z0 ,
1

1 + ‖x‖2

z1 , 1 + xT c†

v , A†x+ b†

q , z0
(z0‖x‖2yTv + z1)2 + σ2‖x‖2(1 + z0‖x‖2‖y‖2)

2πσ2(1 + z0‖x‖2‖y‖2)
5
2

p ,
‖z1y − v‖2 + z0‖x‖2(v2y1 − v1y2)2

2σ2(1 + ‖x‖2(1 + ‖y‖2))
.

HereA† is any 2× 2 real matrix and b†, c†, and y are any 2× 1 real vectors.

Proof By (5) from Proposition 1, any u that satisfies the following equation is a kernel
for τ .

uτ ,σ(θ†,x,y) ,
1

(2π)n

∫
Ω

(∫
Θ

eiω
T (τ (x,θ)−y)kσ(θ − θ†) dθ

)
dω .

We proceed with computing u as follows:

17
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uτ ,σ(θ†,x,y)

,
1

(2π)n

∫
Ω

(∫
Θ

eiω
T (τ (x,θ)−y)kσ(θ − θ†) dθ

)
dω

=

∫
C

( 1

(2π)n

∫
Ω

∫
A

∫
B
e
iωT ( Ax+b

1+cT x
−y)

kσ(A−A†)kσ(b− b†) dA db dω
)

kσ(c− c†) dc

=

∫
C

(
k
(A†x+ b†

1 + cTx
− y;

σ2(1 + ‖x‖2)

(1 + cTx)2

)
kσ(c− c†)

)
dc (14)

=

∫
C2

∫
C1

(
k
(A†x+ b†

1 + cTx
− y;

σ2(1 + ‖x‖2)

(1 + cTx)2

)
kσ(c1 − c†1)dc1

)
kσ(c2 − c†2)dc2,

where (14) applies Lemma 4 with the particular choice of t(x) = 1 + cTx, and
C = C1 × C2 with C1 = C2 = R.

We continue by first computing the inner integral, aka w.r.t. c1. To reduce clutter,
we introduce the following auxiliary variables which are independent of c1.

v , A†x+ b†

s , 1 + c2x2

z0 ,
1

σ2(1 + ‖x‖2)

z1 ,
1

2πσ
√

2π
.

Now we proceed with integration w.r.t. c1 as below.

∫
C1
kσ(c1 − c†1) k(

A†x+ b†

1 + cTx
− y;

σ2(1 + ‖x‖2)

(1 + cTx)2
) dc1

=

∫
C1

1√
2πσ

(1 + cTx)2

2πσ2(1 + ‖x‖2)
e
−(c1−c

†
1)2

2σ2 − (1+cT x)2

2σ2(1+‖x‖2)
‖A
†x+b†

1+cT x
−y‖2

dc1

= z0z1

∫
C1

(q0 + c1q1 + c21q2)e−p2c
2
1+p1c1+p0 dc1

= z0z1

√
π

p2
ep0+

p2
1

4p2

(
q0 + q1

p1

2p2
+ q2

1

4p2
2

(2p2 + p2
1)
)
, (15)

where (15) uses Corollary 7 with the particular choice of pi and qi for i = 0, 1, 2
as the following. Obviously the following p2 satisfies p2 > 0. Also not that pi and qi
are independent of integration variable c1.
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q0 , s2

q1 , 2x1s

q2 , x2
1

p0 , − c
†
1

2

2σ2
− z0

2
‖v − sy‖2

p1 ,
c†1
σ2

+ z0

(
x1y

T (v − sy)
)

p2 ,
1

2σ2
+ z0

x2
1‖y‖2

2
.

Combining (??) and (15) gives the following.

uτ ,σ(θ†,x,y)

=

∫
C2
z0z1

√
π

p2
ep0+

p2
1

4p2

(
q0 + q1

p1

2p2
+ q2

1

4p2
2

(2p2 + p2
1)
)
dc2 .

We can compute the above integral in a similar fashion as shown below.

uτ ,σ(θ†,x,y)

= z0z1

√
π

p2

∫
C2
kσ(c2 − c†2)ep0+

p2
1

4p2

(
q0 + q1

p1

2p2
+ q2

1

4p2
2

(2p2 + p2
1)
)
dc2

= z0z1

√
π

p2

1√
2πσ

∫
C2
ep0+

p2
1

4p2
− (c2−c

†
2)2

2

(
q0 + q1

p1

2p2
+ q2

1

4p2
2

(2p2 + p2
1)
)
dc2

=
z0z1z

2
2

|x2|

√
π

p2

∫
C2

1√
2πσ

(Q0 + sQ1 + s2Q2)e−P2s
2+P1s+P0 ds (16)

=
z0z1z

2
2

σ|x2|

√
π

2p2P2
eP0+

P2
1

4P2

(
Q0 +Q1

P1

2P2
+Q2

1

4P 2
2

(2P2 + P 2
1 )
)
, (17)

where (16) applies change of variable s = 1 + x2c2 to the integral. Note that,∫
R f(c2)dc2 = sign(x2)

∫
R f((s − 1)/x2)ds/x2 = 1/|x2|

∫
R f((s − 1)/x2)ds. Also,

(17) uses Corollary 7 with the particular choice of z2, Pi and Qi for i = 0, 1, 2 as the
following. Obviously the following P2 satisfies P2 > 0. Also not that Pi and Qi are
independent of integration variable s.
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z2 ,
1

1 + σ2x2
1z0‖y‖2

Q0 ,
1

z2
σ2x2

1 + x2
1(c†1 + σ2z0x1y

Tv)2

Q1 , 2x1(c†1 + σ2z0x1y
Tv)

Q2 , 1

P0 , − 1

2σ2x2
2

(1 + c†2x2)2 − z0z2

2
(‖v − c†1x1y‖2 + σ2z0x

2
1(v2y1 − v1y2)2)

P1 , z0z2y
T (v − c†1x1y) +

1

σ2x2
2

(1 + c†2x2)

P2 ,
1

2σ2x2
2

+
z0z2

2
‖y‖2 .

In fact, by plugging in the definitions for zi, Pi, and Qi and performing elementary
algebraic manipulations, one can write (17) more compactly as the following,

uτ ,σ(θ†,x,y) = qe−p ,

where the auxiliary variables are as below:

z0 ,
1

1 + ‖x‖2

z1 , 1 + xT c†

v , A†x+ b†

q , z0
(z0‖x‖2yTv + z1)2 + σ2‖x‖2(1 + z0‖x‖2‖y‖2)

2πσ2(1 + z0‖x‖2‖y‖2)
5
2

p ,
‖z1y − v‖2 + z0‖x‖2(v2y1 − v1y2)2

2σ2(1 + ‖x‖2(1 + ‖y‖2))
.

�
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