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Abstract. One of the main challenges in learning fine-grained visual
categories is gathering training images. Recent work in Zero-Shot Learn-
ing (ZSL) circumvents this challenge by describing categories via at-
tributes or text. However, not all visual concepts, e.g ., two people danc-
ing, are easily amenable to such descriptions. In this paper, we propose
a new modality for ZSL using visual abstraction to learn difficult-to-
describe concepts. Specifically, we explore concepts related to people and
their interactions with others. Our proposed modality allows one to pro-
vide training data by manipulating abstract visualizations, e.g ., one can
illustrate interactions between two clipart people by manipulating each
person’s pose, expression, gaze, and gender. The feasibility of our ap-
proach is shown on a human pose dataset and a new dataset containing
complex interactions between two people, where we outperform several
baselines. To better match across the two domains, we learn an explicit
mapping between the abstract and real worlds.
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1 Introduction

Fine-grained object classification has gained significant attention in recent years.
One of its main challenges is gathering training images. For example, though it
may be easy to find images of birds, it might be very difficult to find images of
specific species of birds, e.g ., “least auklet.” Zero-Shot Learning (ZSL) [7,16,18,
30] addresses this scenario by providing an alternative approach that does not
require any example training images. Instead, a user may provide other forms
of side information, such as semantic visual attributes [16] (e.g ., “has black
forehead,” “has rounded wings”) or textual descriptions of categories [7].

While semantic attributes or text-based descriptions provide an intuitive
method for describing a variety of visual concepts, generating semantic descrip-
tions is tedious or unreasonable for many visual concepts. For instance, how
would a user semantically describe “a person sitting” to a recognition system
that did not understand the concept of “sitting”? The problem is further ex-
acerbated if the category is related to the interaction of multiple objects. For
instance, consider the specific dancing poses between two people shown in the
upper-right of Figure 1. Describing these scenes to a computer would require a
lengthy textual description and still might not capture the full nuance.
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Train on:  Test on: 

“dancing with” 

“wrestling with” 

Fig. 1. Our approach: First, we have people create abstract illustrations (left) using our
interface for various categories. Then we train models of these categories on illustration
data. Finally, we test our models on real images (right).

To address this issue, we propose a new modality for ZSL that utilizes visual
abstraction. The underlying intuition, shared by work in sketch-based image
retrieval [6,24], is that it can be easier to communicate a visual concept through
an abstract visual representation rather than a textual description. Thus, instead
of a textual description like an attribute list, our proposed modality allows a
supervisor to create abstract illustrations (left side of Figure 1).

In this paper, we use visual abstraction to train models for recognizing visual
classes related to the pose of individuals or the interaction between two people.
These concepts are of high interest in computer vision and are difficult to de-
scribe with traditional ZSL approaches. We introduce a novel image dataset,
INTERACT, of 60 fine-grained interactions between pairs of people depicting
various combinations of verbs and propositions (e.g ., “running after,” “running
to,” “arguing with”). We test our approach on this dataset and a subset of the
PARSE [21] dataset. We introduce a simple and intuitive interface that allows a
supervisor to train these visual models. This interface lets users illustrate visual
categories by varying the poses, expressions, gazes, and genders of people built
from a collection of clipart. We present results for category-level ZSL (where
each concept has a semantic name but is still hard to semantically describe, such
as “dancing with”) and instance-level ZSL (where each concept is very specific,
such as a specific “dancing with” pose, and may not even have a semantic name).
Surprisingly, our models, trained only on abstract illustrations (i.e., visual ab-
stractions), are effective at the category-level classification task on real images,
even if only a single illustration depicting the concept is provided. As more
example illustrations are provided, performance is further improved (Figure 4).

We create models that can generalize from abstract visualizations to real
images by using a novel set of features. We analyze the role of different feature
types (e.g ., contact between people, expressions) and show that some are more
informative than others. When creating these example illustrations, users may
visualize the semantically important aspects of the poses and interactions in
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more detail, but may have a fuzzier or even skewed notion of the other aspects.
Moreover, our easy-to-use interface results in biases in the illustrations (e.g .,
the interface does not allow for out-of-plane rotation). To account for these hu-
man tendencies, as well as interface biases, we learn an explicit mapping from
the features extracted from illustrations to the features extracted from real im-
ages. This allows us to improve performance on instance-level ZSL. Our visual
abstraction interface, code, and datasets are publicly available.

2 Related Work

We discuss existing work on zero-shot learning, learning with synthetic data,
learning semantic relations, pose estimation, and action recognition.

Zero-Shot Learning (ZSL): The problem of learning models of visual concepts
without example images of the concepts is called Zero-Shot Learning. Attributes
(mid-level, visual, and semantic features) [9,10,15,16] provide a natural interface
for ZSL [16], where an unseen class is described by a list of attributes. Equipped
with a set of pre-trained attribute classifiers, a test image can be probabilistically
matched to each of these attribute signatures and be classified as the category
with the highest probability. Instead of using a list of attributes, recent work [7]
has leveraged more general textual descriptions of categories to build visual
models of these categories. Our work takes a fundamentally different approach
to ZSL. We propose a strictly visual modality to allow a supervisor to train a
model for visual concepts that may not be easily describable in semantic terms,
e.g ., poses of people, interactions between people.

Learning With Synthetic Data: Our work introduces the use of abstract
visualizations as a modality to train visual models in a ZSL setting. Previously,
papers have explored the use of synthetic data to aid in the training of vision al-
gorithms. In many object recognition tasks, it is common to perturb the training
data using affine warps to augment the training data [14]. Computer-generated
scenes may also be used to evaluate recognition systems [13]. Shotton et al . [23]
used synthetically generated depth data depicting humans to learn a human pose
detector from this depth data. Unlike these approaches, we are trying to learn
high-level, complex concepts where it is not feasible to automatically generate
synthetic data, so we must rely on humans to create our synthetic data. Most
similar to our work, the problem of semantic scene understanding using abstract
scenes was studied in [31]. They use a dataset of simple sentences corresponding
to abstract scenes to learn a mapping from sentences to abstract scenes. Recently,
sequences of abstract scenes were used to predict which objects will move in the
near future [11]. Unlike these works, we use abstraction to learn visual models
that can be applied to real images. Sketch-based image retrieval [6, 24] allows
users to search for an image by sketching the concept. Sketching complex inter-
actions between people would be time consuming, and likely inaccurate for most
lay users. More importantly, our modality has the potential to augment the ab-
stract scenes with a large variety of visual cues (e.g ., gender, ethnicity, clothing,
background) that would be cumbersome for users to convey via sketches.
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Learning Semantic Relations: Previous papers have studied relations be-
tween people [26] and other objects [22,29]. Most similar to the learning seman-
tic relations part of our work, Yang et al . [26] used contact points to detect six
different interactions between people. Sadeghi et al . [22] and Yao et al . [29] both
model the relationship of people and objects when their combination creates a
canonical pose or “visual phrase.” Unlike all of this previous work, we are able
to train our models for a larger number of concepts without relying on any train-
ing images. Several papers have studied the relations of people in groups using
videos [4, 17], such as “queuing in line” or whether people are looking at each
other [19]. While our approach only considers relations between people in the
2D image space, recently Chakraborty et al . [3] explored determining human
relations using 3D information from a single image.

Pose Estimation and Action Recognition: Automatically estimating hu-
man pose [2, 27] and recognizing human actions [1, 28] in images has received
a lot of attention in the vision community. These efforts are orthogonal to the
focus of our work. We propose a new modality that enables us to train a vision
system to recognize fine-grained interactions between people without any exam-
ple images depicting those interactions. This can be augmented with any pose
estimation technique at test time.

3 Datasets

To evaluate our approach, we need real images to test our visual models. For
evaluation, we use two datasets: INTERACT, a new dataset that we introduce
here, and the standard PARSE dataset [21].

3.1 INTERACT

Many fine-grained visual categories exist between pairs of people. While some
datasets exist for a small number of these categories [26], we collected a new
dataset with a significantly larger number of visual classes, INTERACT.

Interactions: Our dataset focuses on two people interacting via different verb
phrases. They include transitive verbs (e.g ., “A is pushing B”), joint activities
(e.g ., “A is dancing with B”), movement verbs with directional prepositions
(e.g ., “A is walking to B”), and posture verbs with locational prepositions (e.g .,
“A is sitting next to B”). We combine different verbs with different prepositions
to get 60 verb phrases, including ones that share a verb but contain different
prepositions, such as “running to” and “running away from.” The full list of
interactions can be found in the supplementary material (on the project website).

Real Image Collection: We crowdsourced our image collection on Amazon
Mechanical Turk (AMT). We asked 3 workers to collect 20 images that meet the
following criteria: they are all different photographs, they depict the sentence
“Person A is verb phrase Person B,” and all contain exactly 2 people. Note that
we did not require them to have each person’s entire body in the image (e.g .,
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some body parts can be cropped out), which makes this dataset challenging
(e.g ., right side of Figure 1). This resulted in 3,600 initial images.

Real Image Annotations: We also used AMT to collect various image an-
notations that are needed for our features via different custom interfaces. The
pose annotation interface prompted the worker with one of our images and its
corresponding sentence. We highlighted whether the worker should be annotat-
ing Person A or Person B in the sentence. The worker annotates the person’s 14
body parts (right side of Figure 3). The worker provides their best guess if the
part is occluded and responds “not present” if it is not within the image border.
We had 5 workers annotate each person in each image and averaged them for
the final ground truth pose annotations. In addition, workers annotated ground
truth eye gaze (i.e., looking to the image left or right), facial expression (i.e., one
of six prototypic emotional expressions [5] plus a neutral expression), and gender
of each person via separate interfaces. We selected the mode of their responses
for our final annotation. In addition to collecting the annotation of interest, two
interfaces asked one additional question each. One asked if the prompted image
contained exactly two main people or not and the other asked if the annotated
pose overlaid on the prompted image was of good quality or not. We used the
last two annotation queries to remove poor quality work. Additionally, a GIST-
based [20] image matching scheme was used to remove duplicates. Removing
these images gave us our final annotated dataset with 3,172 images (52.9 images
per category on average). Some examples can be found in the bottom part of
Figure 1 and the rightmost two columns of Figure 5. More details about our
interfaces and our procedure can be found in the supplementary material.

3.2 PARSE

We also use a subset of the standard PARSE [21] dataset, which originally con-
tains 305 images of individuals in various poses. We created a list of categories
that frequently appear in the PARSE dataset (e.g ., “is dunking,” “is diving for
an object”). From the images that belong to these categories, we removed those
that were used to train the pose detector [26]. Some categories (e.g ., “is stand-
ing”) had disproportionately large number of images, so we removed images at
random from these categories. This leaves us with 108 images in our dataset (7.7
images per category on average). We also collected the same annotations as in
Section 3.1, except for pose (since ground truth pose annotations are already
available with the dataset). See the supplementary material for more details.

4 Our Approach

In this section, we present our new modality for ZSL. We begin by introducing
our user interface for collecting visual illustrations for training. We then describe
the novel features that are extracted from our abstract illustrations and real
images. Finally, we describe the approach used to train our models. The results
of various experiments follow in Section 5.
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Fig. 2. User interface (with random initialization) used to collect abstract illustrations
on AMT. Workers were able to manipulate pose, expression, gaze direction, and gender.

4.1 Visual Abstraction Interface

For our domain of interest, we conjectured that our concepts depend primarily
on four main factors: pose, eye gaze, facial expression, and gender. Some other
factors that we do not model, but may also be important are clothing, the
presence of other objects, and scene context. A screenshot of our user interface
is shown in Figure 2. Initially, two people (one blond-haired and one brown-
haired) are shown with random poses, gaze directions (i.e., “flip”), expressions,
and genders. We allow our subjects to continuously manipulate the poses (i.e.,
joint angles and positions) of both people by dragging on the various body
parts. They may horizontally flip the people to change their perceived eye gaze
direction. The facial expressions are chosen from the same selection as is used
for the annotation of real images (Section 3.1). Finally, the subjects may select
one of the two predominant genders for each clipart person.

To collect our training data for category-level ZSL, we prompt the user with
a sentence to illustrate using the interface (e.g ., “Person A is dancing with
Person B.”, “A person is dunking.”). To promote diversity, we encouraged them
to imagine any objects or background, as long as the poses are consistent with
the imagined scene (e.g ., a worker can imagine a chair and illustrate someone
sitting on it). The interface includes buttons to annotate which clipart person
corresponds to which person in the sentence. Some illustrations are shown on the
left side of Figure 1 and in the left three columns of Figure 5. For the PARSE
concepts, the interface is the same except that only one person is present.

For instance-level ZSL, we modify our previous interface. Instead of sentences,
we first (briefly, for 2 seconds) show the user a real image and then they recreate
it (from memory) as best they can. The stated goal is to recreate the real image
so another person would be able to select the shown image from a collection of
real images. This mimics the scenario when a person is searching for a specific
image: they might be clear on the semantically important aspects while having a
fuzzier or skewed notion of other aspects. Another bias of the illustrations occurs
when it is impossible to recreate the real image exactly due to the limitations of
the interface, such as not being able to change the height of the clipart people,
the interface not allowing for out-of-plane rotation, etc.
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4.2 Relation and Appearance Features

Using the annotations described in Section 3.1 (i.e., pose, gaze, expression, and
gender) for persons denoted by i and j, we compute a set of relation and ap-
pearance features. Some of our relation features are distance-based and some are
angle-based. All distance-based features use Gaussians placed at different posi-
tions to capture relative distance. The Gaussians’ σ parameters are proportional
to the scale of each person. A person’s scale is defined as the distance between
their head and the center of their shoulders and hips. Unless otherwise noted,
all angles/orientations are w.r.t. the image frame’s x-axis. They are represented
by 12 dimensional unit histograms with each bin corresponding to π/6 radians.
Soft assignments are made to the histograms using linear weighting. The first
two sets of features, Basic and Gaze, account for both people. The remaining
five feature sets are described for a single person and must be evaluated twice
(swapping i and j) and concatenated. The feature sets are described below.

Basic: This feature set encodes basic relation properties between two people,
such as relative orientation and distance. We calculate each person’s body angle
(in the image frame). This is calculated from the image coordinates for the head
and mid-point between shoulders. We place Gaussians at the center of the people
and then use the distance between them to evaluate the Gaussian functions. We
also calculate the angle (in the image frame) between the centers of the two
people. This gives us a total of 2 ∗ (12 + 1) + 12 = 38 features. They can be
thought of as simplifying the people into two boxes (possibly having different
scale parameters) with certain orientations and looking at the relative positions
and angle between their centers.

Gaze: The gaze feature set is encoded using 5 binary features, corresponding
to i looking at j, j looking at i, both people are looking at each other, both
people are looking away from each other, and both people are looking in the
same direction. To determine if i is looking at j, we check if j’s neck is in the
appropriate region of the image. The image is divided into two parts by extending
the line between i’s head and neck and the appropriate region is defined to be
the area where i is looking (which depends on i’s gaze direction). Once we have
both i looking at j and vice versa features, we compute the remaining three gaze
features via the appropriate logic operations (e.g ., if i is looking at j and j is
looking at i, then the looking-at-each-other feature is true).

Global: This feature set encodes the general position of the joints in reference
to a body. Three Gaussians are placed in a 3 × 1 grid on the image based on
the body’s size and orientation (the blue circles in Figure 3). The positions of
one person’s 8 joints (two for each limb) are evaluated using all Gaussians from
both Gaussian sets (i.e., person i’s joints relative to person i’s global Gaussians
and person j’s global Gaussians), giving us a total of 8 ∗ 3 ∗ 2 = 48 features.

Contact: This feature set encodes the specific location of the joints in reference
to other body parts. For each person, we place Gaussians at 13 positions: 3
for each limb and 1 for the head (the green circles in Figure 3). The positions
of 8 joints (two for each limb) are then evaluated on the Gaussians placed on
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Fig. 3. (Left) Illustration of the part locations labeled for each person (red dots). We
illustrate the standard deviations of the Gaussians used to compute normalized features
(Section 4.2) for a joint’s general location (blue circles) and whether there is contact
with another part (green circles). (Right) The corresponding labeled part locations on
a real image (from INTERACT) acquired from one of our annotation tasks.

themselves (e.g ., is i’s left hand near i’s head) and the other person (e.g ., is i’s
right elbow near j’s left shoulder) for a total of 8 ∗ 13 ∗ 2 = 208 features.

Orientation: This final pose-based feature set encodes the relative (i.e., not
w.r.t. the image frame) joint angles. They are computed by finding the relative
angle between parent and child joint positions (e.g ., left elbow and left shoulder).
We compute 8 joint angles (two for each limb) for a total of 8 ∗ 12 = 96 features.

Expression: We convert expression into a set of 7 binary variables.

Gender: We convert gender into a set of 2 binary variables.
Thus, concatenating all of these features gives us a total of 38 + 5 + 2 ∗ (48 +

208 + 96 + 7 + 2) = 765 features, which are all between 0 and 1.
For the PARSE dataset, where each image only contains a single person, each

of the previous feature sets are modified accordingly (if at all). The Basic feature
set becomes only the body angle. The Gaze feature set is replaced with 2 binary
variables that indicate if the person is looking to their left or right, respectively.
The Global feature set is halved. The Contact feature set is also halved. This
gives us a total of 12 + 2 + 24 + 104 + 96 + 7 + 2 = 247 features.

By design, our illustration interfaces provide (without any additional anno-
tation) the same data that was collected for the real images. Thus, we can use
the same features for both abstract illustrations and real images.

4.3 Zero-Shot Learning Models

In category-level ZSL, we are trying to create a model that can classify an image
as belonging to one of the given semantic classes (e.g ., “dancing with”). We
use multiple one-vs-all linear Support Vector Machines (SVMs), trained on the
abstract illustration features. At test time, these classifiers are used to determine
the category of the real images. In instance-level ZSL, we are trying to decide
if an image represents a specific concept, i.e., given a test real image, we wish
to determine which specific abstract visualization (instance) corresponds to the
real image. For this, we use Nearest Neighbor matching. Since our features are
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from two different domains, learning a mapping between them could improve
the matching performance. This is described next.

4.4 Mapping From Abstract to Real for the Instance-level Model

We learn a mapping between the domain of abstract images and the domain
of real images. To learn such a mapping, we need examples that correspond to
the same thing in both domains. We use some of our instance-level illustrations
(Section 4.1) as these abstract-real pairs. The mapping can learn to correct for
both user and interface biases discussed in Section 4.1.

Simpler techniques, such as Canonical Correspondence Analysis [12], did not
learn a good mapping between the abstract and real worlds. We found that
General Regression Neural Networks (GRNN) [25] did better. We also found
that converting from our abstract features into “real” features performed better
than converting real features into “abstract” features. Thus, the GRNN’s input
is all of the abstract features and its output is all of the real features.

5 Experimental Results

In this section, we describe our experiments which show that our new modality
for ZSL is able to create models that can learn category-level (Section 5.1) and
instance-level (Section 5.2) visual concepts. We perform an ablation study on
different feature sets, showing their performance contribution (Section 5.3). Fi-
nally, we utilize a state-of-the-art pose detector on both INTERACT and PARSE
datasets to investigate our approach in a more automatic setting (Section 5.4).

5.1 Category-Level Zero-Shot Learning

We begin by experimenting with the ability of our novel modality to learn our
category-level concepts, i.e., classifying images into one of the semantic descrip-
tions, such as “A is kicking B.” To acquire the required training illustrations,
we ran our visual abstraction interface with sentence prompts (described in Sec-
tion 4.1) on AMT. We had 50 workers create an abstract illustration for each of
the 60 semantic concepts from INTERACT (Section 3.1) and the 14 semantic
concepts from PARSE (Section 3.2). After removing poor quality work, we are
left with 3,000 and 696 illustrations, respectively.

The setup for all category-level ZSL experiments (unless otherwise noted)
is described here. Using the abstract illustrations, we train multiple one-vs-all
linear SVMs (liblinear [8]) with the cost parameter, C, set to 0.01, which worked
reasonably well across all experiments. For INTERACT, there is ambiguity (at
test time) as to which person is Person A and which person is Person B. To
account for this, we evaluate each of the classifiers using both orderings, select the
most confident score on orderings, and then predict the label of the classifier with
the highest confidence. Our category-level classification metric is the mean of the
class-wise raw accuracies. We observe performance as the number of training
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Fig. 4. We evaluate category-level ZSL performance on both datasets as described in
Section 5.1. As we increase the number of ZSL training illustrations, our classification
performance improves, but it begins to saturate. With both using perfect poses, our
model (PP) does much better than the attribute DAP model (Attributes w/ PP). We
also show results (described in Section 5.4) with output from a pose detector (YR) and,
for INTERACT, a pose detector assisted by ground truth bounding boxes (YR-BB).

illustrations per category is increased. For each number of training illustrations,
we average over 50 random selections of training illustrations (per category).

Results for our model with perfect poses, PP, are shown in Figure 4. It can
be seen that even one illustration is able to perform several times better than
random on both of our datasets. Adding additional training illustrations im-
proves performance, although it begins to saturate around 20 training examples.
For INTERACT, we reach ∼17% using all illustrations. We compare this to a
stronger baseline: attribute-based ZSL. We define a vocabulary of 79 attributes,
such as “A’s hand is touching B’s knee,” gender, and gaze. For attribute ZSL,
we use the DAP model from Lampert et al . [16]. Our approach significantly out-
performs this approach (∼3.5%), demonstrating the benefit of our new modality
for ZSL. More details about the baseline are in the supplementary material.

Some qualitative results are shown in Figure 5. Confusion matrices for the
model are shown in the supplementary material. We also did a human agreement
study on AMT for INTERACT. On average, the correct verb phrase for an image
was selected only ∼51% of the time (averaged over 10 workers per image), which
demonstrates how ambiguous this classification task can be. A similar human
agreement study was done for the illustrations to identify the most canonical
(i.e., top) illustrations per category. Using the top illustrations instead of random
ones to train our model provided modest improvements when using fewer training
illustrations. If we treat any of the human labels that were collected during the
INTERACT human agreement experiment as a valid label, we find that the PP
model’s performance increases to ∼37% (at 50 illustrations per category).

5.2 Instance-Level Zero-Shot Learning

We also test the ability of our new modality to learn instance-level concepts.
To acquire the necessary training illustrations, we ran our visual abstraction
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Fig. 5. The left columns show 5 random illustrations (of 50) used for classifier training.
Columns 6 and 7 contain the most confident true positive and false positive for a given
category, respectively. Mistakes include choosing a semantically reasonable verb (top),
choosing the incorrect preposition (middle), and incorrect prediction due to the pose
similarity between two classes (bottom). More examples are in the supplement.

interface with image prompts (as described in Section 4.1) on AMT. We showed
a real image (one of 3,172 from INTERACT and one of 305 from PARSE) for
two seconds to the workers, who recreated it using the interface. Through a pilot
study, just as in [6], we found two seconds to be sufficient for people to capture
the more salient aspects of the image. It is unlikely that a user would have every
detail of the instance in mind when trying to train a model for a specific concept
and we wanted to mimic this in our setup. We had 3 workers recreate each of
the images, and after manually removing work from problematic workers, we are
left with 8,916 and 914 illustrations for INTERACT and PARSE, respectively.

We perform classification via nearest-neighbor matching. If the real image’s
features match the features of any of the (up to) 3 illustration instances that
workers created for it, we have found a correct label. We vary K, the number of
nearest neighbors that are considered, and evaluate the percentage of real images
that have a correct label within those K neighbors. We normalized K by the total
number of illustrations. We need a training dataset to learn a mapping between
the abstract and real worlds, i.e., training the GRNN from Section 4.4. For IN-
TERACT, we split the categories into 39 seen categories for training and 21
unseen categories for testing to minimize learning biases specific to specific cate-
gories (i.e., verb phrases). The results are averaged over 10 random seen/unseen
category splits. For PARSE, the training data corresponds to the 197 images
that were not assigned a semantic category nor were used in the pose detector
training (as discussed in Section 3.2). The training required for this mapping
can be thought of as analogous to training the attribute predictors in the DAP
model [16] for ZSL. One needs to train the attribute classifiers before one can



12 S. Antol, C.L. Zitnick, and D. Parikh

0
2
4
6
8
10
12
14
16
18

0 50 100

W/O GRNN W/ GRNN Random YR YRBB PP

Top K (Normalized) Nearest Neighbors Searched (%) 

INTERACT PARSE 

I
m

a
g

e
s
 
w

i
t
h

 
C

o
r
r
e
c
t
 

I
n

s
t
a
n

c
e
 
F
o

u
n

d
 
(
%

)
 

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

YR-BB 

Fig. 6. We evaluate instance-level classification, showing the percent of images (y-
axis) with the correct label being found within the top K (dataset size normalized)
guesses (x-axis). We outperform random and see some benefit of learning a mapping
(see Section 4.4) between the domains, particularly for the PARSE dataset.

use attribute descriptions with DAP. Similarly, we learn the mapping between
the real and abstract world offline on a held out set of categories.

The results are shown in Figure 6. We see that our models are doing orders
of magnitude better than chance just looking at the closest nearest neighbor
and the gap increases as we search through neighbors that are further away.
We also evaluate our approach by performing matching after transforming the
train features via the GRNN (described in Section 4.4) with the GRNN’s sole
parameter, spread, set to 5 and 1 for INTERACT and PARSE, respectively.
Using the mapping learned by the GRNNs helps, particularly on the PARSE
dataset. More experimental results can be found in the supplementary material.

5.3 Feature Ablation Investigation

To better understand our system and the interactions in our dataset, we explore
which of our features are most informative on INTERACT. Figure 7 shows
the variation in performance when different feature sets are used. Comparing
the first and third from the right bars, we note that our gaze features have
negligible impact (actually performing slightly worse). This is possibly because,
in real images, people might be looking head-on, whereas our abstract people
can only look left or right. Of the appearance-based features, expression is most
beneficial. This makes sense intuitively, since two people’s poses can be roughly
similar but the perceived action can change based on expression. For instance,
when two people are wrestling vs. when they are hugging (e.g ., Figure 1). In
both cases, arms can be around the other person’s body, but expressions will
change from angry to happy. Of the pose-based features, the Global feature is
the most informative on its own. It indirectly captures contact and joint angles,
so it is reasonable that it performs better than Contact or Orientation alone.
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Fig. 7. We plot classification performance for INTERACT using different subsets of fea-
tures. Some features, like Global, are more informative than others. Of the appearance-
based features, Expression turns out to be most informative, presumably when body
pose features are similar (e.g ., “wrestling” vs. “hugging”).

5.4 Automatic Pose Evaluation

In this section, we do an evaluation of our category-level ZSL task using the
current state-of-the-art pose detector developed by Yang and Ramanan [27].
We utilized the pre-trained PARSE model and detected the pose on both the
INTERACT and the PARSE datasets. For the expression, gaze, and gender fea-
tures, we continue to use human annotations. These results (YR) are shown in
Figures 4, 6, and 7. As expected, due to the pose detector being developed for
PARSE, automatic detection on the PARSE dataset yields reasonable perfor-
mance (compared to perfect pose). The results on INTERACT do not perform
nearly as well, although it still outperforms the baselines. To boost the perfor-
mance of the pose detector on INTERACT, we also experimented with providing
ground truth bounding boxes (YR-BB), which results in better performance.

INTERACT is significantly more challenging than PARSE for automatic pose
detection. Thus, it is not surprising that incorrectly detected poses confuse our
models. Properties that make INTERACT particularly challenging include: im-
ages from arbitrary perspectives, more difficult (for the detector) poses (e.g .,
“crawling,” “lying”), overlapping people (e.g ., “hugging,” “standing in front
of”), and incomplete poses (i.e., not all body parts are present). We investigated
this latter point by selecting images from INTERACT based on the number of
parts present in the image. There are 14 parts per person and we ensure that
both people have at least a certain number of parts. Requiring all parts to be
within the image reduces INTERACT to 1,689 images (from 3,172). 91.5% of our
images contain at least 7 parts per person. More of these details can be found in
the supplementary material. We re-evaluate our category-level ZSL performance
(at 50 training illustrations per category) as we vary the part threshold and show
our results in Figure 8. Although there is some noise, both the perfect pose and
automatic pose detection methods show an increase in accuracy as we require
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Fig. 8. We plot classification performance as we vary the minimum number of parts
both people have (see Section 5.4). While the perfect pose approach only has minor im-
provements, both detection approaches improve more when all people are fully visible,
showing that current detectors do not work well when parts are missing.

more parts to be within the image border. This result suggests that there is a
lot to gain by furthering research into more robust pose detectors. We would
like to reiterate that we have part annotations even in the case of occlusion,
which probably accounts for some of the automatic detector’s performance dif-
ference with perfect poses. We hope the introduction of INTERACT will help
the community advance pose detectors in more practical settings.

6 Conclusions

We propose a new modality for Zero-Shot Learning (ZSL) of concepts that are
too difficult to describe in terms of attributes or text in general (e.g ., “holding
hands with”). A user illustrates the concept through visual abstraction. We
demonstrate its utility for classifying poses of people and interactions between
two people. We introduce a new dataset containing 60 fine-grained verb phrases
describing interactions between pairs of people. We present results for category-
level ZSL (where the concept has a semantic name, e.g ., “crouching with”) and
instance-level ZSL (where the concept is specific and may not have a semantic
name). We report results on our new dataset, as well as a standard single-person
pose dataset. We also learn a mapping from abstract-world features to real-
world features. Our approach outperforms several baselines. We also analyze
the information captured by various subsets of features, such as contact and
expression. Our interface, code, and datasets are made publicly available.
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